Resistively detected electron spin resonance andg-factor in few-layer exfoliated MoS2devices.

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Chithra H Sharma, Appanna Parvangada, Lars Tiemann, Kai Rossnagel, Jens Martin, Robert H Blick
{"title":"Resistively detected electron spin resonance and<i>g-</i>factor in few-layer exfoliated MoS<sub>2</sub>devices.","authors":"Chithra H Sharma, Appanna Parvangada, Lars Tiemann, Kai Rossnagel, Jens Martin, Robert H Blick","doi":"10.1088/1361-648X/adc35d","DOIUrl":null,"url":null,"abstract":"<p><p>MoS<sub>2</sub>has recently emerged as a promising material for enabling quantum devices and spintronic applications. In this context, an improved physical understanding of the<i>g</i>-factor of MoS<sub>2</sub>depending on device geometry is of great importance. Resistively detected electron spin resonance (RD-ESR) could be employed to determine the<i>g</i>-factor in micron-scale devices. However, its application and RD-ESR studies have been limited by Schottky or high-resistance contacts to MoS<sub>2</sub>. Here, we exploit naturally<i>n</i>-doped few-layer MoS<sub>2</sub>devices with ohmic tin (Sn) contacts that allow the electrical study of spin phenomena. Resonant excitation of electron spins and resistive detection is a possible path to exploit the spin effects in MoS<sub>2</sub>devices. Using RD-ESR, we determine the<i>g</i>-factor of few-layer MoS<sub>2</sub>to be ∼1.92 and observe that the<i>g</i>-factor value is independent of the charge carrier density within the limits of our measurements.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/adc35d","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

MoS2has recently emerged as a promising material for enabling quantum devices and spintronic applications. In this context, an improved physical understanding of theg-factor of MoS2depending on device geometry is of great importance. Resistively detected electron spin resonance (RD-ESR) could be employed to determine theg-factor in micron-scale devices. However, its application and RD-ESR studies have been limited by Schottky or high-resistance contacts to MoS2. Here, we exploit naturallyn-doped few-layer MoS2devices with ohmic tin (Sn) contacts that allow the electrical study of spin phenomena. Resonant excitation of electron spins and resistive detection is a possible path to exploit the spin effects in MoS2devices. Using RD-ESR, we determine theg-factor of few-layer MoS2to be ∼1.92 and observe that theg-factor value is independent of the charge carrier density within the limits of our measurements.

少层剥离二硫化钼器件中电阻检测的电子自旋共振和因子。
mos2最近成为一种有前途的材料,用于实现量子器件和自旋电子应用。在这种情况下,提高对依赖于器件几何形状的mos2的g因子的物理理解是非常重要的。电阻检测电子自旋共振(RD-ESR)可用于微米级器件,但其应用和RD-ESR研究受到肖特基或MoS2高电阻接触的限制。在这里,我们利用自然n掺杂的少层mos2器件与欧姆锡(Sn)接触,允许自旋现象的电学研究。电子自旋的共振激发和电阻检测是利用二硫化钼器件中自旋效应的可能途径。利用RD-ESR,我们确定了少层二硫化钼的g因子为~1.92,并观察到在我们的测量范围内,g因子值与载流子密度无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信