Ai Miyasaka, Takeshi Kanda, Naoki Nonaka, Yuka Terakoshi, Yoan Cherasse, Yukiko Ishikawa, Yulong Li, Hotaka Takizawa, Arisa Hirano, Jun Seita, Masashi Yanagisawa, Takeshi Sakurai, Katsuyasu Sakurai, Qinghua Liu
{"title":"Sequential transitions of male sexual behaviors driven by dual acetylcholine-dopamine dynamics.","authors":"Ai Miyasaka, Takeshi Kanda, Naoki Nonaka, Yuka Terakoshi, Yoan Cherasse, Yukiko Ishikawa, Yulong Li, Hotaka Takizawa, Arisa Hirano, Jun Seita, Masashi Yanagisawa, Takeshi Sakurai, Katsuyasu Sakurai, Qinghua Liu","doi":"10.1016/j.neuron.2025.01.032","DOIUrl":null,"url":null,"abstract":"<p><p>The neural mechanisms underlying the sequential transitions of male sexual behaviors, including mounting, intromission, and ejaculation, remain largely unexplored. Here, we report that acetylcholine (ACh)-dopamine (DA) dynamics in the ventral shell of the nucleus accumbens (vsNAc) regulate these sexual transitions in male mice. During intromission, the vsNAc displays a unique pattern of dual ACh-DA rhythms, generated by reciprocal regulation between ACh and DA signaling via nicotinic ACh receptors (nAChRs) and DA D2 receptors (D2Rs). Knockdown of choline acetyltransferase (ChAT) or D2R in the vsNAc diminishes the occurrence of intromission and ejaculation. Optogenetic manipulations demonstrated that DA signaling maintains sexual behaviors by suppressing D2R<sup>vsNAc</sup> neurons. Moreover, ACh signaling promotes the initiation of mounting and intromission and facilitates the intromission-ejaculation transition by inducing a slowdown in DA rhythm. Together, these findings reveal that coordinated ACh-DA dynamics in the vsNAc play a critical role in orchestrating the sequential transitions of male sexual behaviors.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2025.01.032","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The neural mechanisms underlying the sequential transitions of male sexual behaviors, including mounting, intromission, and ejaculation, remain largely unexplored. Here, we report that acetylcholine (ACh)-dopamine (DA) dynamics in the ventral shell of the nucleus accumbens (vsNAc) regulate these sexual transitions in male mice. During intromission, the vsNAc displays a unique pattern of dual ACh-DA rhythms, generated by reciprocal regulation between ACh and DA signaling via nicotinic ACh receptors (nAChRs) and DA D2 receptors (D2Rs). Knockdown of choline acetyltransferase (ChAT) or D2R in the vsNAc diminishes the occurrence of intromission and ejaculation. Optogenetic manipulations demonstrated that DA signaling maintains sexual behaviors by suppressing D2RvsNAc neurons. Moreover, ACh signaling promotes the initiation of mounting and intromission and facilitates the intromission-ejaculation transition by inducing a slowdown in DA rhythm. Together, these findings reveal that coordinated ACh-DA dynamics in the vsNAc play a critical role in orchestrating the sequential transitions of male sexual behaviors.
期刊介绍:
Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.