Joseph R Lagner, Eric A Newberry, Yazmín Rivera, Liyang Zhang, Christopher A Vakulskas, Yiping Qi
{"title":"Amplification-free detection of plant pathogens by improved CRISPR-Cas12a systems: a case study on phytoplasma.","authors":"Joseph R Lagner, Eric A Newberry, Yazmín Rivera, Liyang Zhang, Christopher A Vakulskas, Yiping Qi","doi":"10.3389/fpls.2025.1544513","DOIUrl":null,"url":null,"abstract":"<p><p>CRISPR-based disease detection has the potential to profoundly change how pathogens are detected in plant materials. However, there has been a lack of research directed into improving explicitly the CRISPR components that define these detection assays. To fill this technology gap, we have designed and optimized our CRISPR-Cas12a based detection platform by showcasing its capability of detecting a plant pathogen group of rising importance, <i>Candidatus</i> Phytoplasma. Most assays utilize isothermal pre-amplification steps, which may boost sensitivity yet often lead to false positives. Aiming for a pre-amplification-free assay to maintain accuracy, we screened multiple Cas12a orthologs and variants and found LbCas12a-Ultra to be the most sensitive Cas12a. We further improved the detection system by using stem-loop reporters of various sizes and found 7nt stem-loop significantly outperformed other stem-loop sizes as well as the commonly used linear reporters. When the 7nt stem-loop reporter was combined with the best-performing LbCas12a-Ultra, we found a 10-fold increase in sensitivity over the standard LbCas12a with the linear reporter detection assay. To enhance the coverage of highly diverse phytoplasmas, we tested a multiplex detection method predicted to target nearly 100% of all documented phytoplasma species on NCBI. A lateral flow assay was also developed to accommodate instrument-free detection with the optimized reagents. Our study demonstrates an improved CRISPR-Cas12a detection system that has wide applications for plant pathogen detection and can be easily integrated into almost any other Cas12a-based detection platform for boosted sensitivity.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"16 ","pages":"1544513"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11924941/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2025.1544513","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
CRISPR-based disease detection has the potential to profoundly change how pathogens are detected in plant materials. However, there has been a lack of research directed into improving explicitly the CRISPR components that define these detection assays. To fill this technology gap, we have designed and optimized our CRISPR-Cas12a based detection platform by showcasing its capability of detecting a plant pathogen group of rising importance, Candidatus Phytoplasma. Most assays utilize isothermal pre-amplification steps, which may boost sensitivity yet often lead to false positives. Aiming for a pre-amplification-free assay to maintain accuracy, we screened multiple Cas12a orthologs and variants and found LbCas12a-Ultra to be the most sensitive Cas12a. We further improved the detection system by using stem-loop reporters of various sizes and found 7nt stem-loop significantly outperformed other stem-loop sizes as well as the commonly used linear reporters. When the 7nt stem-loop reporter was combined with the best-performing LbCas12a-Ultra, we found a 10-fold increase in sensitivity over the standard LbCas12a with the linear reporter detection assay. To enhance the coverage of highly diverse phytoplasmas, we tested a multiplex detection method predicted to target nearly 100% of all documented phytoplasma species on NCBI. A lateral flow assay was also developed to accommodate instrument-free detection with the optimized reagents. Our study demonstrates an improved CRISPR-Cas12a detection system that has wide applications for plant pathogen detection and can be easily integrated into almost any other Cas12a-based detection platform for boosted sensitivity.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.