Yun Lian, Chenfang Lei, Dongwei Han, Ming Yuan, Weiguo Lu
{"title":"Breeding SCN-resistant soybean lines with improved oil and protein contents.","authors":"Yun Lian, Chenfang Lei, Dongwei Han, Ming Yuan, Weiguo Lu","doi":"10.3389/fpls.2025.1539409","DOIUrl":null,"url":null,"abstract":"<p><p>Soybean cyst nematode (SCN) disease caused by <i>Heterodera glycines</i> is one of the most devastating diseases in soybean (<i>Glycine max</i> L.) and results in significant yield losses annually worldwide. Breeding crops for resistance is an eco-friendly approach to minimize these losses. In this study, SCN-resistant germplasm with excellent agronomic traits was obtained through cross-breeding between resistant germplasm sources and local cultivars that were high-yielding but susceptible to SCN in China's two major soybean-growing regions. Using the single seed descent method, plants with favorable agronomic traits were selected and then planted into rows to raise seeds for marker assays and environmental-controlled bioassays. Finally, three lines from Northeast China and three from the Huang-Huai Valleys, all harboring resistance to races 1, 3, and 5, were selected. Their 100-seed weight ranged from 18.91 g to 21.6 g. The average oil contents of the three high-oil-content lines (QingF6-67, QingF6-98, and QingF6-99) from Northeast China ranged from 19.96% to 22.74%. The average protein contents of the three lines (HHF7-3-10, HHF7-6-6, and HHF7-6-10) from the Huang-Huai Valleys ranged from 42.3% to 43.5%. These six resistant lines, which have increased seed oil or protein contents, could be used as resistant cultivars against SCN or advanced donor parents in soybean breeding programs.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"16 ","pages":"1539409"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11922712/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2025.1539409","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Soybean cyst nematode (SCN) disease caused by Heterodera glycines is one of the most devastating diseases in soybean (Glycine max L.) and results in significant yield losses annually worldwide. Breeding crops for resistance is an eco-friendly approach to minimize these losses. In this study, SCN-resistant germplasm with excellent agronomic traits was obtained through cross-breeding between resistant germplasm sources and local cultivars that were high-yielding but susceptible to SCN in China's two major soybean-growing regions. Using the single seed descent method, plants with favorable agronomic traits were selected and then planted into rows to raise seeds for marker assays and environmental-controlled bioassays. Finally, three lines from Northeast China and three from the Huang-Huai Valleys, all harboring resistance to races 1, 3, and 5, were selected. Their 100-seed weight ranged from 18.91 g to 21.6 g. The average oil contents of the three high-oil-content lines (QingF6-67, QingF6-98, and QingF6-99) from Northeast China ranged from 19.96% to 22.74%. The average protein contents of the three lines (HHF7-3-10, HHF7-6-6, and HHF7-6-10) from the Huang-Huai Valleys ranged from 42.3% to 43.5%. These six resistant lines, which have increased seed oil or protein contents, could be used as resistant cultivars against SCN or advanced donor parents in soybean breeding programs.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.