Design and evaluation of novel triazole derivatives as potential anti-gout inhibitors: a comprehensive molecular modeling study.

IF 3.8 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Frontiers in Chemistry Pub Date : 2025-03-06 eCollection Date: 2025-01-01 DOI:10.3389/fchem.2025.1518777
Mohammed Er-Rajy, Mohamed El Fadili, Sara Zarougui, Somdutt Mujwar, Mourad Aloui, Mohammed Zerrouk, Belkheir Hammouti, Larbi Rhazi, Rachid Sabbahi, Mohammed M Alanazi, Khalil Azzaoui, Rachid Salghi, Menana Elhallaoui
{"title":"Design and evaluation of novel triazole derivatives as potential anti-gout inhibitors: a comprehensive molecular modeling study.","authors":"Mohammed Er-Rajy, Mohamed El Fadili, Sara Zarougui, Somdutt Mujwar, Mourad Aloui, Mohammed Zerrouk, Belkheir Hammouti, Larbi Rhazi, Rachid Sabbahi, Mohammed M Alanazi, Khalil Azzaoui, Rachid Salghi, Menana Elhallaoui","doi":"10.3389/fchem.2025.1518777","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Gout is the most common inflammatory arthritis, characterized by hyperuricemia, tophus formation, joint disease, and kidney stones. Uric acid, the final byproduct of purine catabolism, is eliminated via the kidneys and digestive system. Xanthine oxidase (XO) catalyzes the conversion of hypoxanthine and xanthine into uric acid, making XO inhibitors crucial for treating hyperuricemia and gout. Currently, three XO inhibitors are clinically used, showing significant efficacy. A molecular modeling study on triazole derivatives aims to identify novel XO inhibitors using 3D-QSAR, molecular docking, MD simulations, ADMET analysis, and DFT calculations. These computational approaches facilitate drug discovery while reducing research costs.</p><p><strong>Methods: </strong>Our work focuses on a series of synthesized anti-xanthine oxidase inhibitors, aiming to develop new inhibitors. A computational study was carried out to identify the xanthine oxidase inhibitory structural features of a series of triazole inhibitors using computational method.</p><p><strong>Results: </strong>A model based on CoMFA and CoMSIA/SEA has been built to predict new triazole derivatives.</p><p><strong>Discussion: </strong>The optimal model established from CoMFA and CoMSIA/SEA was successfully evaluated for its predictive capability. Visualization of the contour maps of both models showed that modifying the substituents plays a key role in enhancing the biological activity of anti-gout inhibitors. Molecular docking results for complexes N°8-3NVY and N°22-3NVY showed scores of -7.22 kcal/mol and -8.36 kcal/mol, respectively, indicating substantial affinity for the enzyme. Complex N°8-3NVY forms two hydrogen bonds with SER 69 and ASN 71, three alkyl bonds with ALA 70, LEU 74, and ALA 75, and one Pi-Pi T-shaped bond with PHE 68. Complex N°22-3NVY forms three hydrogen bonds with HIS 99, ARG 29, and ILE 91, and one halogen bond with LEU 128 at 3.60 Å. A MD study revealed that the N°22-3NVY complex remained highly stable throughout the simulation. Therefore, we proposed six new molecules, their anti-gout inhibitory activities were predicted using two models, and they were evaluated for Lipinski's rule, and ADMET properties. The results show that both Pred 4 and Pred 5 have better pharmacokinetic properties than the height potent molecule in the studied series, making these two compounds valuable candidates for new anti-gout drugs. Subsequently, using DFT study to evaluate the chemical reactivity properties of these two proposed compounds, the energy gap results revealed that both molecules exhibit moderate chemical stability and reactivity.</p>","PeriodicalId":12421,"journal":{"name":"Frontiers in Chemistry","volume":"13 ","pages":"1518777"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11922854/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3389/fchem.2025.1518777","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Gout is the most common inflammatory arthritis, characterized by hyperuricemia, tophus formation, joint disease, and kidney stones. Uric acid, the final byproduct of purine catabolism, is eliminated via the kidneys and digestive system. Xanthine oxidase (XO) catalyzes the conversion of hypoxanthine and xanthine into uric acid, making XO inhibitors crucial for treating hyperuricemia and gout. Currently, three XO inhibitors are clinically used, showing significant efficacy. A molecular modeling study on triazole derivatives aims to identify novel XO inhibitors using 3D-QSAR, molecular docking, MD simulations, ADMET analysis, and DFT calculations. These computational approaches facilitate drug discovery while reducing research costs.

Methods: Our work focuses on a series of synthesized anti-xanthine oxidase inhibitors, aiming to develop new inhibitors. A computational study was carried out to identify the xanthine oxidase inhibitory structural features of a series of triazole inhibitors using computational method.

Results: A model based on CoMFA and CoMSIA/SEA has been built to predict new triazole derivatives.

Discussion: The optimal model established from CoMFA and CoMSIA/SEA was successfully evaluated for its predictive capability. Visualization of the contour maps of both models showed that modifying the substituents plays a key role in enhancing the biological activity of anti-gout inhibitors. Molecular docking results for complexes N°8-3NVY and N°22-3NVY showed scores of -7.22 kcal/mol and -8.36 kcal/mol, respectively, indicating substantial affinity for the enzyme. Complex N°8-3NVY forms two hydrogen bonds with SER 69 and ASN 71, three alkyl bonds with ALA 70, LEU 74, and ALA 75, and one Pi-Pi T-shaped bond with PHE 68. Complex N°22-3NVY forms three hydrogen bonds with HIS 99, ARG 29, and ILE 91, and one halogen bond with LEU 128 at 3.60 Å. A MD study revealed that the N°22-3NVY complex remained highly stable throughout the simulation. Therefore, we proposed six new molecules, their anti-gout inhibitory activities were predicted using two models, and they were evaluated for Lipinski's rule, and ADMET properties. The results show that both Pred 4 and Pred 5 have better pharmacokinetic properties than the height potent molecule in the studied series, making these two compounds valuable candidates for new anti-gout drugs. Subsequently, using DFT study to evaluate the chemical reactivity properties of these two proposed compounds, the energy gap results revealed that both molecules exhibit moderate chemical stability and reactivity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Chemistry
Frontiers in Chemistry Chemistry-General Chemistry
CiteScore
8.50
自引率
3.60%
发文量
1540
审稿时长
12 weeks
期刊介绍: Frontiers in Chemistry is a high visiblity and quality journal, publishing rigorously peer-reviewed research across the chemical sciences. Field Chief Editor Steve Suib at the University of Connecticut is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to academics, industry leaders and the public worldwide. Chemistry is a branch of science that is linked to all other main fields of research. The omnipresence of Chemistry is apparent in our everyday lives from the electronic devices that we all use to communicate, to foods we eat, to our health and well-being, to the different forms of energy that we use. While there are many subtopics and specialties of Chemistry, the fundamental link in all these areas is how atoms, ions, and molecules come together and come apart in what some have come to call the “dance of life”. All specialty sections of Frontiers in Chemistry are open-access with the goal of publishing outstanding research publications, review articles, commentaries, and ideas about various aspects of Chemistry. The past forms of publication often have specific subdisciplines, most commonly of analytical, inorganic, organic and physical chemistries, but these days those lines and boxes are quite blurry and the silos of those disciplines appear to be eroding. Chemistry is important to both fundamental and applied areas of research and manufacturing, and indeed the outlines of academic versus industrial research are also often artificial. Collaborative research across all specialty areas of Chemistry is highly encouraged and supported as we move forward. These are exciting times and the field of Chemistry is an important and significant contributor to our collective knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信