Is the burden of diabetes in Australia underestimated? Comparison of diabetes ascertainment using linked administrative health data and an Australian diabetes registry

IF 6.1 3区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Emma Cox , Joanne Gale , Michael O. Falster , Juliana de Oliveira Costa , Stephen Colagiuri , Natasha Nassar , Alice A. Gibson
{"title":"Is the burden of diabetes in Australia underestimated? Comparison of diabetes ascertainment using linked administrative health data and an Australian diabetes registry","authors":"Emma Cox ,&nbsp;Joanne Gale ,&nbsp;Michael O. Falster ,&nbsp;Juliana de Oliveira Costa ,&nbsp;Stephen Colagiuri ,&nbsp;Natasha Nassar ,&nbsp;Alice A. Gibson","doi":"10.1016/j.diabres.2025.112113","DOIUrl":null,"url":null,"abstract":"<div><h3>Aims</h3><div>To compare an algorithm for identifying individuals with diabetes using linked administrative health data with an Australian diabetes registry (National Diabetes Services Scheme, NDSS).</div></div><div><h3>Methods</h3><div>This prospective cohort study linked baseline survey data for 266,414 individuals aged ≥ 45 years from the 45 and Up Study, Australia, to administrative health data sets. An algorithm for identifying individuals with diabetes was developed based on a combination of claims for dispensed insulin and glucose lowering medicines, diabetes-related hospital admissions, and diabetes-specific Medicare claims. Using the algorithm, participants were classified as ‘certain’, ‘uncertain’ or ‘no’ diabetes. The algorithm was compared to NDSS registrations as the reference standard.</div></div><div><h3>Results</h3><div>Amongst the 45 and Up Study cohort, there were 53,669 individuals with certain diabetes identified by the algorithm, and 35,900 NDSS registrants. Compared with the NDSS, the sensitivity of the algorithm was 96.9% (95%CI 96.7–97.1) and specificity 91.8% (95%CI 91.7–91.9). Of the 53,699 individuals with diabetes identified by the algorithm, 34,864 were registered to the NDSS (PPV = 64.9%, 95%CI: 64.6–65.2).</div></div><div><h3>Conclusions</h3><div>This study demonstrates the value in using linked administrative data for diabetes monitoring and surveillance. National estimates using the NDSS alone may underestimate the diabetes burden by up to 35%.</div></div>","PeriodicalId":11249,"journal":{"name":"Diabetes research and clinical practice","volume":"222 ","pages":"Article 112113"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes research and clinical practice","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168822725001275","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Aims

To compare an algorithm for identifying individuals with diabetes using linked administrative health data with an Australian diabetes registry (National Diabetes Services Scheme, NDSS).

Methods

This prospective cohort study linked baseline survey data for 266,414 individuals aged ≥ 45 years from the 45 and Up Study, Australia, to administrative health data sets. An algorithm for identifying individuals with diabetes was developed based on a combination of claims for dispensed insulin and glucose lowering medicines, diabetes-related hospital admissions, and diabetes-specific Medicare claims. Using the algorithm, participants were classified as ‘certain’, ‘uncertain’ or ‘no’ diabetes. The algorithm was compared to NDSS registrations as the reference standard.

Results

Amongst the 45 and Up Study cohort, there were 53,669 individuals with certain diabetes identified by the algorithm, and 35,900 NDSS registrants. Compared with the NDSS, the sensitivity of the algorithm was 96.9% (95%CI 96.7–97.1) and specificity 91.8% (95%CI 91.7–91.9). Of the 53,699 individuals with diabetes identified by the algorithm, 34,864 were registered to the NDSS (PPV = 64.9%, 95%CI: 64.6–65.2).

Conclusions

This study demonstrates the value in using linked administrative data for diabetes monitoring and surveillance. National estimates using the NDSS alone may underestimate the diabetes burden by up to 35%.
澳大利亚的糖尿病负担被低估了吗?使用相关的行政健康数据和澳大利亚糖尿病登记的糖尿病确诊比较。
目的:比较使用澳大利亚糖尿病登记(国家糖尿病服务计划,NDSS)相关联的行政健康数据识别糖尿病患者的算法。方法:这项前瞻性队列研究将来自澳大利亚45及以上研究的266,414名年龄 ≥ 45 岁的个体的基线调查数据与行政卫生数据集联系起来。一种识别糖尿病患者的算法是基于对配发胰岛素和降血糖药物的索赔,糖尿病相关的住院治疗以及糖尿病特定的医疗保险索赔的组合而开发的。使用该算法,参与者被分为“确定”、“不确定”和“没有”糖尿病。将该算法与NDSS配准作为参考标准进行比较。结果:在45岁及以上的研究队列中,有53,669人通过该算法识别出患有某种糖尿病,35,900人注册为NDSS。与NDSS相比,该算法的敏感性为96.9 %(95 %CI 96.7 ~ 97.1),特异性为91.8 %(95 %CI 91.7 ~ 91.9)。在该算法识别的53,699例糖尿病患者中,34,864例注册到NDSS (PPV = 64.9 %,95 %CI: 64.6-65.2)。结论:本研究证明了在糖尿病监测和监测中使用关联管理数据的价值。仅使用NDSS的国家估计可能低估糖尿病负担高达35%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Diabetes research and clinical practice
Diabetes research and clinical practice 医学-内分泌学与代谢
CiteScore
10.30
自引率
3.90%
发文量
862
审稿时长
32 days
期刊介绍: Diabetes Research and Clinical Practice is an international journal for health-care providers and clinically oriented researchers that publishes high-quality original research articles and expert reviews in diabetes and related areas. The role of the journal is to provide a venue for dissemination of knowledge and discussion of topics related to diabetes clinical research and patient care. Topics of focus include translational science, genetics, immunology, nutrition, psychosocial research, epidemiology, prevention, socio-economic research, complications, new treatments, technologies and therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信