StainAI: quantitative mapping of stained microglia and insights into brain-wide neuroinflammation and therapeutic effects in cardiac arrest.

IF 5.2 1区 生物学 Q1 BIOLOGY
Chao-Hsiung Hsu, Yi-Yu Hsu, Be-Ming Chang, Katherine Raffensperger, Micah Kadden, Hoai T Ton, Essiet-Adidiong Ette, Stephen Lin, Janiya Brooks, Mark W Burke, Yih-Jing Lee, Paul C Wang, Michael Shoykhet, Tsang-Wei Tu
{"title":"StainAI: quantitative mapping of stained microglia and insights into brain-wide neuroinflammation and therapeutic effects in cardiac arrest.","authors":"Chao-Hsiung Hsu, Yi-Yu Hsu, Be-Ming Chang, Katherine Raffensperger, Micah Kadden, Hoai T Ton, Essiet-Adidiong Ette, Stephen Lin, Janiya Brooks, Mark W Burke, Yih-Jing Lee, Paul C Wang, Michael Shoykhet, Tsang-Wei Tu","doi":"10.1038/s42003-025-07926-y","DOIUrl":null,"url":null,"abstract":"<p><p>Microglia, the brain's resident macrophages, participate in development and influence neuroinflammation, which is characteristic of multiple brain pathologies. Diverse insults cause microglia to alter their morphology from \"resting\" to \"activated\" shapes, which vary with stimulus type, brain location, and microenvironment. This morphologic diversity commonly restricts microglial analyses to specific regions and manual methods. We introduce StainAI, a deep learning tool that leverages 20x whole-slide immunohistochemistry images for rapid, high-throughput analysis of microglial morphology. StainAI maps microglia to a brain atlas, classifies their morphology, quantifies morphometric features, and computes an activation score for any region of interest. As a proof of principle, StainAI was applied to a rat model of pediatric asphyxial cardiac arrest, accurately classifying millions of microglia across multiple slices, surpassing current methods by orders of magnitude, and identifying both known and novel activation patterns. Extending its application to a non-human primate model of simian immunodeficiency virus infection further demonstrated its generalizability beyond rodent datasets, providing new insights into microglial responses across species. StainAI offers a scalable, high-throughput solution for microglial analysis from routine immunohistochemistry images, accelerating research in microglial biology and neuroinflammation.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"462"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926354/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-07926-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microglia, the brain's resident macrophages, participate in development and influence neuroinflammation, which is characteristic of multiple brain pathologies. Diverse insults cause microglia to alter their morphology from "resting" to "activated" shapes, which vary with stimulus type, brain location, and microenvironment. This morphologic diversity commonly restricts microglial analyses to specific regions and manual methods. We introduce StainAI, a deep learning tool that leverages 20x whole-slide immunohistochemistry images for rapid, high-throughput analysis of microglial morphology. StainAI maps microglia to a brain atlas, classifies their morphology, quantifies morphometric features, and computes an activation score for any region of interest. As a proof of principle, StainAI was applied to a rat model of pediatric asphyxial cardiac arrest, accurately classifying millions of microglia across multiple slices, surpassing current methods by orders of magnitude, and identifying both known and novel activation patterns. Extending its application to a non-human primate model of simian immunodeficiency virus infection further demonstrated its generalizability beyond rodent datasets, providing new insights into microglial responses across species. StainAI offers a scalable, high-throughput solution for microglial analysis from routine immunohistochemistry images, accelerating research in microglial biology and neuroinflammation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信