The chromosome-scale genomes of two Tinospora species reveal differential regulation of the MEP pathway in terpenoid biosynthesis.

IF 4.4 1区 生物学 Q1 BIOLOGY
Zhiyu Chen, Lan Xun, Yunyan Lu, Xingyu Yang, Minghui Chen, Tianyu Yang, Zhinan Mei, Yunqiang Yang, Xuefei Yang, Yongping Yang
{"title":"The chromosome-scale genomes of two Tinospora species reveal differential regulation of the MEP pathway in terpenoid biosynthesis.","authors":"Zhiyu Chen, Lan Xun, Yunyan Lu, Xingyu Yang, Minghui Chen, Tianyu Yang, Zhinan Mei, Yunqiang Yang, Xuefei Yang, Yongping Yang","doi":"10.1186/s12915-025-02185-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The relationship between gene family expansion and the resulting changes in plant phenotypes has shown remarkable complexity during the evolution. The gene family expansion has contributed to the diversity in plant phenotypes, specifically metabolites through neo-functionalization and sub-functionalization. However, the negative regulatory effects associated with the gene family expansion remain poorly understood.</p><p><strong>Results: </strong>Here, we present the chromosome-scale genomes of Tinospora crispa and Tinospora sinensis. Comparative genomic analyses demonstrated conserved chromosomal evolution within the Menispermaceae family. KEGG analysis revealed a significant enrichment of genes related to terpenoid biosynthesis in T. sinensis. However, T. crispa exhibited a higher abundance of terpenoids compared to T. sinensis. Detailed analysis revealed the expansion of genes encoding 1-hydroxy-2-methyl 2-(E)-butenyl 4-diphosphate synthase (HDS), a key enzyme in the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway of terpenoid biosynthesis in T. sinensis. TsiHDS4 retained the ancestral function of converting methylerythritol cyclic diphosphate (MEcPP) to (E)-4-hydroxy-3-methylbut-2-enyl diphosphate (HMBPP). However, the noncanonical CDS-derived small peptide TsiHDS5 was shown to interact with TsiHDS4, inhibiting its catalytic activity. This interaction reduced the levels of HMBPP and isopentenyl pyrophosphate (IPP), which represent key substrates for downstream terpenoid biosynthesis.</p><p><strong>Conclusions: </strong>These findings offer clues to decipher the variations in the MEP pathway of terpenoid biosynthesis between T. crispa and T. sinensis and form a basis for further detailed research on the negative regulation of expanded genes.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"23 1","pages":"84"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11927234/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12915-025-02185-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The relationship between gene family expansion and the resulting changes in plant phenotypes has shown remarkable complexity during the evolution. The gene family expansion has contributed to the diversity in plant phenotypes, specifically metabolites through neo-functionalization and sub-functionalization. However, the negative regulatory effects associated with the gene family expansion remain poorly understood.

Results: Here, we present the chromosome-scale genomes of Tinospora crispa and Tinospora sinensis. Comparative genomic analyses demonstrated conserved chromosomal evolution within the Menispermaceae family. KEGG analysis revealed a significant enrichment of genes related to terpenoid biosynthesis in T. sinensis. However, T. crispa exhibited a higher abundance of terpenoids compared to T. sinensis. Detailed analysis revealed the expansion of genes encoding 1-hydroxy-2-methyl 2-(E)-butenyl 4-diphosphate synthase (HDS), a key enzyme in the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway of terpenoid biosynthesis in T. sinensis. TsiHDS4 retained the ancestral function of converting methylerythritol cyclic diphosphate (MEcPP) to (E)-4-hydroxy-3-methylbut-2-enyl diphosphate (HMBPP). However, the noncanonical CDS-derived small peptide TsiHDS5 was shown to interact with TsiHDS4, inhibiting its catalytic activity. This interaction reduced the levels of HMBPP and isopentenyl pyrophosphate (IPP), which represent key substrates for downstream terpenoid biosynthesis.

Conclusions: These findings offer clues to decipher the variations in the MEP pathway of terpenoid biosynthesis between T. crispa and T. sinensis and form a basis for further detailed research on the negative regulation of expanded genes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Biology
BMC Biology 生物-生物学
CiteScore
7.80
自引率
1.90%
发文量
260
审稿时长
3 months
期刊介绍: BMC Biology is a broad scope journal covering all areas of biology. Our content includes research articles, new methods and tools. BMC Biology also publishes reviews, Q&A, and commentaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信