Peter T Nguyen, Justin C Luong, Van Wishingrad, Lisa Stratton, Michael E Loik, Rachel S Meyer
{"title":"Soil biome variation of Lupinus nipomensis in wet-cool vs. dry-warm microhabitats and greenhouse.","authors":"Peter T Nguyen, Justin C Luong, Van Wishingrad, Lisa Stratton, Michael E Loik, Rachel S Meyer","doi":"10.1002/ajb2.70020","DOIUrl":null,"url":null,"abstract":"<p><strong>Premise: </strong>Environmental DNA (eDNA) can be used to determine the composition of the soil biome community, revealing beneficial and antagonistic microbes and invertebrates associated with plants. eDNA analyses can complement traditional soil community studies, offering more comprehensive information for conservation practitioners. Studies are also needed to examine differences between field and greenhouse soil biomes because greenhouse-grown plants are often transplanted in the field during restoration efforts.</p><p><strong>Methods: </strong>We used eDNA multilocus metabarcoding to test how the soil biome of the federally and state-endangered species, Lupinus nipomensis, differed between wet-cool and dry-warm microhabitats. At Arroyo Grande, California, 20 experimental plots were sampled, representing a factorial combination of wet-cool vs. dry-warm soil and plots that did or did not contain L. nipomensis. In a simultaneous greenhouse study, L. nipomensis was grown in drought and well-watered conditions to compare soil communities between field and greenhouse.</p><p><strong>Results: </strong>A diversity of carbon-cycling microorganisms but not nitrogen-fixers were overrepresented in the field, and nitrogen-fixing bacteria were overrepresented in some greenhouse treatments. The microbial communities in the field soils were more species-rich and evenly distributed than in greenhouse communities. In field plots, microhabitats significantly influenced community beta diversity, while field plots with or without L. nipomensis had no significant differences in alpha or beta diversity.</p><p><strong>Conclusions: </strong>Our study shows the utility of eDNA soil analysis in elucidating soil biome community differences for conservation and highlights the influence of plant microhabitats on soil microbe associations.</p>","PeriodicalId":7691,"journal":{"name":"American Journal of Botany","volume":" ","pages":"e70020"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/ajb2.70020","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Premise: Environmental DNA (eDNA) can be used to determine the composition of the soil biome community, revealing beneficial and antagonistic microbes and invertebrates associated with plants. eDNA analyses can complement traditional soil community studies, offering more comprehensive information for conservation practitioners. Studies are also needed to examine differences between field and greenhouse soil biomes because greenhouse-grown plants are often transplanted in the field during restoration efforts.
Methods: We used eDNA multilocus metabarcoding to test how the soil biome of the federally and state-endangered species, Lupinus nipomensis, differed between wet-cool and dry-warm microhabitats. At Arroyo Grande, California, 20 experimental plots were sampled, representing a factorial combination of wet-cool vs. dry-warm soil and plots that did or did not contain L. nipomensis. In a simultaneous greenhouse study, L. nipomensis was grown in drought and well-watered conditions to compare soil communities between field and greenhouse.
Results: A diversity of carbon-cycling microorganisms but not nitrogen-fixers were overrepresented in the field, and nitrogen-fixing bacteria were overrepresented in some greenhouse treatments. The microbial communities in the field soils were more species-rich and evenly distributed than in greenhouse communities. In field plots, microhabitats significantly influenced community beta diversity, while field plots with or without L. nipomensis had no significant differences in alpha or beta diversity.
Conclusions: Our study shows the utility of eDNA soil analysis in elucidating soil biome community differences for conservation and highlights the influence of plant microhabitats on soil microbe associations.
期刊介绍:
The American Journal of Botany (AJB), the flagship journal of the Botanical Society of America (BSA), publishes peer-reviewed, innovative, significant research of interest to a wide audience of plant scientists in all areas of plant biology (structure, function, development, diversity, genetics, evolution, systematics), all levels of organization (molecular to ecosystem), and all plant groups and allied organisms (cyanobacteria, algae, fungi, and lichens). AJB requires authors to frame their research questions and discuss their results in terms of major questions of plant biology. In general, papers that are too narrowly focused, purely descriptive, natural history, broad surveys, or that contain only preliminary data will not be considered.