Shuwei Gao, Yanqiu Wei, Chen Li, Bingbing Xie, Xinran Zhang, Ye Cui, Huaping Dai
{"title":"A novel lncRNA ABCE1-5 regulates pulmonary fibrosis by targeting KRT14.","authors":"Shuwei Gao, Yanqiu Wei, Chen Li, Bingbing Xie, Xinran Zhang, Ye Cui, Huaping Dai","doi":"10.1152/ajpcell.00374.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Idiopathic pulmonary fibrosis (IPF) is a progressive and degenerative interstitial lung disease characterized by complex etiology, unclear pathogenesis, and high mortality. Long non-coding RNAs (lncRNAs) have been identified as key regulators in modulating the initiation, maintenance, and progression of pulmonary fibrosis. However, the precise pathological mechanisms through which lncRNAs are involved in IPF remain limited and require further elucidation. A novel lncABCE1-5 was identified as significantly decreased by an ncRNA microarray analysis in our eight IPF lung samples compared with three donor tissues and validated by qRT-PCR analysis in clinical lung samples. To investigate the biological function of ABCE1-5, we performed loss-and gain-of-function experiments in vitro and in vivo. LncABCE1-5 silencing promoted A549 cell migration and A549 and BEAS-2B cell apoptosis, while enhancing the expression of proteins associated with extracellular matrix deposition, whereas overexpression of ABCE1-5 partially attenuated TGF-β-induced fibrogenesis. Forced ABCE1-5 expression by intratracheal injection of adeno-associated virus 6 (AAV6) revealing the anti-fibrotic effect of ABCE1-5 in BLM-treated mice. Mechanistically, RNA pull-down-mass spectrometry and RIP assay demonstrated that ABCE1-5 directly binds to keratin14 (krt14) sequences, potentially impeding its expression by perturbing mRNA stability. Furthermore, decreased ABCE1-5 levels can promote krt14 expression and enhance the phosphorylation of both mTOR and Akt; overexpression of ABCE1-5 in BLM mouse lung tissue significantly attenuated the elevated levels of p-mTOR and p-AKT. Knockdown of krt14 reversed the activation of mTOR signaling mediated by ABCE1-5 silencing. Collectively, the downregulation of ABCE1-5 mediated krt14 activation, thereby activating mTOR/AKT signaling, to facilitate pulmonary fibrosis progression in IPF.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00374.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and degenerative interstitial lung disease characterized by complex etiology, unclear pathogenesis, and high mortality. Long non-coding RNAs (lncRNAs) have been identified as key regulators in modulating the initiation, maintenance, and progression of pulmonary fibrosis. However, the precise pathological mechanisms through which lncRNAs are involved in IPF remain limited and require further elucidation. A novel lncABCE1-5 was identified as significantly decreased by an ncRNA microarray analysis in our eight IPF lung samples compared with three donor tissues and validated by qRT-PCR analysis in clinical lung samples. To investigate the biological function of ABCE1-5, we performed loss-and gain-of-function experiments in vitro and in vivo. LncABCE1-5 silencing promoted A549 cell migration and A549 and BEAS-2B cell apoptosis, while enhancing the expression of proteins associated with extracellular matrix deposition, whereas overexpression of ABCE1-5 partially attenuated TGF-β-induced fibrogenesis. Forced ABCE1-5 expression by intratracheal injection of adeno-associated virus 6 (AAV6) revealing the anti-fibrotic effect of ABCE1-5 in BLM-treated mice. Mechanistically, RNA pull-down-mass spectrometry and RIP assay demonstrated that ABCE1-5 directly binds to keratin14 (krt14) sequences, potentially impeding its expression by perturbing mRNA stability. Furthermore, decreased ABCE1-5 levels can promote krt14 expression and enhance the phosphorylation of both mTOR and Akt; overexpression of ABCE1-5 in BLM mouse lung tissue significantly attenuated the elevated levels of p-mTOR and p-AKT. Knockdown of krt14 reversed the activation of mTOR signaling mediated by ABCE1-5 silencing. Collectively, the downregulation of ABCE1-5 mediated krt14 activation, thereby activating mTOR/AKT signaling, to facilitate pulmonary fibrosis progression in IPF.
期刊介绍:
The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.