Revealing the Impact of CZTSe/CdS Interface Fluctuations on PV Device Performance through Big Data Analysis Assisted by Machine Learning Methods

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Jon Garí-Galíndez, Fabien Atlan, Jacob Andrade-Arvizu, Robert Fonoll-Rubio, David Payno, Enric Grau-Luque, Alejandro Pérez-Rodríguez, Ignacio Becerril-Romero, Maxim Guc, Victor Izquierdo-Roca, Pedro Vidal-Fuentes
{"title":"Revealing the Impact of CZTSe/CdS Interface Fluctuations on PV Device Performance through Big Data Analysis Assisted by Machine Learning Methods","authors":"Jon Garí-Galíndez,&nbsp;Fabien Atlan,&nbsp;Jacob Andrade-Arvizu,&nbsp;Robert Fonoll-Rubio,&nbsp;David Payno,&nbsp;Enric Grau-Luque,&nbsp;Alejandro Pérez-Rodríguez,&nbsp;Ignacio Becerril-Romero,&nbsp;Maxim Guc,&nbsp;Victor Izquierdo-Roca,&nbsp;Pedro Vidal-Fuentes","doi":"10.1002/smtd.202400661","DOIUrl":null,"url":null,"abstract":"<p>This work showcases the importance of developing suitable inspection and analysis methodologies with high statistical relevance data coupled with machine learning algorithms, for the detection, control, and understanding of small fluctuations in the scale-up of thin film photovoltaics to industrial sizes. To exhibit this methodology, this work investigates the effect of subtle inhomogeneities on the efficiency of thin film solar cells based on the Cu<sub>2</sub>ZnSnSe<sub>4</sub>/CdS interface using two large area samples subdivided in ≈400 individual solar cells. A large dataset obtained from Raman and photoluminescence spectroscopic techniques together with <i>J</i>–<i>V</i> optoelectronic data is generated to elucidate the impact of these inhomogeneities on the efficiency of the devices. Using a combination of statistical (spectral difference) and over 440 000 multivariate polynomial regressions through machine learning algorithms, it is revealed how the main limiting factor for device performance are subtle fluctuations in the nanostructure and surface defects of the CdS layer, rather than compositional fluctuations or defects in the kesterite absorber. It is estimated that the avoidance of these issues could result in an absolute increase in device efficiency of 2%. This could provide a potential avenue for further technology advancement within the kesterite community.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":"9 3","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smtd.202400661","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This work showcases the importance of developing suitable inspection and analysis methodologies with high statistical relevance data coupled with machine learning algorithms, for the detection, control, and understanding of small fluctuations in the scale-up of thin film photovoltaics to industrial sizes. To exhibit this methodology, this work investigates the effect of subtle inhomogeneities on the efficiency of thin film solar cells based on the Cu2ZnSnSe4/CdS interface using two large area samples subdivided in ≈400 individual solar cells. A large dataset obtained from Raman and photoluminescence spectroscopic techniques together with JV optoelectronic data is generated to elucidate the impact of these inhomogeneities on the efficiency of the devices. Using a combination of statistical (spectral difference) and over 440 000 multivariate polynomial regressions through machine learning algorithms, it is revealed how the main limiting factor for device performance are subtle fluctuations in the nanostructure and surface defects of the CdS layer, rather than compositional fluctuations or defects in the kesterite absorber. It is estimated that the avoidance of these issues could result in an absolute increase in device efficiency of 2%. This could provide a potential avenue for further technology advancement within the kesterite community.

Abstract Image

通过机器学习辅助的大数据分析揭示CZTSe/CdS接口波动对光伏器件性能的影响。
这项工作展示了开发合适的检查和分析方法的重要性,这些方法具有高统计相关性的数据以及机器学习算法,用于检测、控制和理解薄膜光伏扩大到工业规模时的小波动。为了展示这种方法,本研究使用两个大面积样品细分为≈400个单独的太阳能电池,研究了细微的不均匀性对基于Cu2ZnSnSe4/CdS界面的薄膜太阳能电池效率的影响。从拉曼光谱和光致发光光谱技术以及J-V光电数据中获得的大型数据集被生成,以阐明这些不均匀性对器件效率的影响。通过机器学习算法,结合统计(光谱差)和超过44万个多元多项式回归,揭示了器件性能的主要限制因素是CdS层的纳米结构和表面缺陷的细微波动,而不是kesterite吸收器的成分波动或缺陷。据估计,避免这些问题可能会导致设备效率绝对提高2%。这可能为kesterite社区的进一步技术进步提供潜在的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信