H-Embedding Induced Electron Localization in Pd Lattice for Improving Electrochemical Hydrogen Purification.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Xuanwei Yin, Cong Wei, Chongyang Tang, Zenan Bian, Bo Liu, Xinqiang Wang, Yaxiong Yang, Yanyan Fang, Hongge Pan, Gongming Wang
{"title":"H-Embedding Induced Electron Localization in Pd Lattice for Improving Electrochemical Hydrogen Purification.","authors":"Xuanwei Yin, Cong Wei, Chongyang Tang, Zenan Bian, Bo Liu, Xinqiang Wang, Yaxiong Yang, Yanyan Fang, Hongge Pan, Gongming Wang","doi":"10.1002/smtd.202500249","DOIUrl":null,"url":null,"abstract":"<p><p>Electrochemical hydrogen purification (EHP) technology with high-efficiency and easy-operation holds great potential in blended hydrogen transportation, which is currently restricted to proton exchange membrane system and Pt-based catalysts. As promising candidates used in alkaline anion exchange membrane system, Pd-based catalysts are hampered by the intense interaction between H<sup>*</sup> and delocalized 4d electrons, resulting in unsatisfactory catalytic activity. In this study, a marked enhancement of the alkaline membrane-based EHP performance is achieved, with hydrogen purity up to 99.96% separated from a CH<sub>4</sub>-H<sub>2</sub> mixture, by strategically incorporating interstitial H atoms into Pd lattices for improving the anodic hydrogen oxidation reaction. Detailed characterizations and density functional theory calculations elucidate that the presence of interstitial H localizes free electrons into Pd-H covalent bonds, thereby weakening the interaction between surface-adsorbed H<sup>*</sup> and the catalytic surface. Moreover, operando spectroscopies and ab initio molecular dynamic simulations reveal that the enhanced interaction between the catalyst surface and interfacial water by electron delocalization, facilitates the desorption of H<sup>*</sup> to the interfacial water layer during catalysis. This research highlights the pivotal role of electronic localization in modulating the adsorption strength of key reaction intermediates for the design of efficient Pd-based catalysts.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2500249"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202500249","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical hydrogen purification (EHP) technology with high-efficiency and easy-operation holds great potential in blended hydrogen transportation, which is currently restricted to proton exchange membrane system and Pt-based catalysts. As promising candidates used in alkaline anion exchange membrane system, Pd-based catalysts are hampered by the intense interaction between H* and delocalized 4d electrons, resulting in unsatisfactory catalytic activity. In this study, a marked enhancement of the alkaline membrane-based EHP performance is achieved, with hydrogen purity up to 99.96% separated from a CH4-H2 mixture, by strategically incorporating interstitial H atoms into Pd lattices for improving the anodic hydrogen oxidation reaction. Detailed characterizations and density functional theory calculations elucidate that the presence of interstitial H localizes free electrons into Pd-H covalent bonds, thereby weakening the interaction between surface-adsorbed H* and the catalytic surface. Moreover, operando spectroscopies and ab initio molecular dynamic simulations reveal that the enhanced interaction between the catalyst surface and interfacial water by electron delocalization, facilitates the desorption of H* to the interfacial water layer during catalysis. This research highlights the pivotal role of electronic localization in modulating the adsorption strength of key reaction intermediates for the design of efficient Pd-based catalysts.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信