Quantitative wound ballistic analysis of gelatin head phantoms by computed tomography using the total crack length method.

IF 1.5 4区 医学 Q2 MEDICINE, LEGAL
Vasiliki Chatzaraki, Dominic Gascho, Michael J Thali, Beat P Kneubuehl, Carlo Tappero, Stephan A Bolliger
{"title":"Quantitative wound ballistic analysis of gelatin head phantoms by computed tomography using the total crack length method.","authors":"Vasiliki Chatzaraki, Dominic Gascho, Michael J Thali, Beat P Kneubuehl, Carlo Tappero, Stephan A Bolliger","doi":"10.1007/s12024-025-00995-9","DOIUrl":null,"url":null,"abstract":"<p><p>Gelatin-based phantoms are appropriate simulants of human soft tissue and can be used for ballistic experiments. Computed tomography (CT) is useful for quantitative wound ballistics analysis and has been applied to gelatin blocks. This study aimed to create total crack length (TCL) profiles along the penetration depth in head phantoms after ballistic experiments with different types of ammunition at varying distances using CT data. Sixteen commercially available gelatin-based head phantoms were subjected to ballistic testing with six different types of ammunition. Nine were contact shots, while seven were fired from a 15-meter distance. Following the experiments, CT scans of the phantoms were performed. The TCL, a secondary effect of the temporary cavity, was measured based on the CT data. All phantoms exhibited perforation shots. The CT data enabled measurements along the penetration depth for each phantom. Metal artifacts caused by small projectile fragments along the path did not interfere with the measurements. The resulting TCL curves for the different ammunition types demonstrated distinct differences. TCL measurements in gelatin-based head phantoms are feasible and provide values proportional to the transferred energy at a given penetration depth for different ammunition types and shooting distances.</p>","PeriodicalId":12449,"journal":{"name":"Forensic Science, Medicine and Pathology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science, Medicine and Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12024-025-00995-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
引用次数: 0

Abstract

Gelatin-based phantoms are appropriate simulants of human soft tissue and can be used for ballistic experiments. Computed tomography (CT) is useful for quantitative wound ballistics analysis and has been applied to gelatin blocks. This study aimed to create total crack length (TCL) profiles along the penetration depth in head phantoms after ballistic experiments with different types of ammunition at varying distances using CT data. Sixteen commercially available gelatin-based head phantoms were subjected to ballistic testing with six different types of ammunition. Nine were contact shots, while seven were fired from a 15-meter distance. Following the experiments, CT scans of the phantoms were performed. The TCL, a secondary effect of the temporary cavity, was measured based on the CT data. All phantoms exhibited perforation shots. The CT data enabled measurements along the penetration depth for each phantom. Metal artifacts caused by small projectile fragments along the path did not interfere with the measurements. The resulting TCL curves for the different ammunition types demonstrated distinct differences. TCL measurements in gelatin-based head phantoms are feasible and provide values proportional to the transferred energy at a given penetration depth for different ammunition types and shooting distances.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Forensic Science, Medicine and Pathology
Forensic Science, Medicine and Pathology MEDICINE, LEGAL-PATHOLOGY
CiteScore
3.90
自引率
5.60%
发文量
114
审稿时长
6-12 weeks
期刊介绍: Forensic Science, Medicine and Pathology encompasses all aspects of modern day forensics, equally applying to children or adults, either living or the deceased. This includes forensic science, medicine, nursing, and pathology, as well as toxicology, human identification, mass disasters/mass war graves, profiling, imaging, policing, wound assessment, sexual assault, anthropology, archeology, forensic search, entomology, botany, biology, veterinary pathology, and DNA. Forensic Science, Medicine, and Pathology presents a balance of forensic research and reviews from around the world to reflect modern advances through peer-reviewed papers, short communications, meeting proceedings and case reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信