{"title":"Targeting COPA to Enhance Erdafitinib Sensitivity in FGFR-Altered Bladder Cancer.","authors":"Huayuan Zhao, Xincheng Gao, Yangkai Jiang, Yanchao Yu, Liang Wang, Jiayin Sun, Miao Wang, Xing Xiong, Chao Huang, Hui Zhang, Guosong Jiang","doi":"10.1002/advs.202413209","DOIUrl":null,"url":null,"abstract":"<p><p>Fibroblast growth factor receptor (FGFR) family aberrations are common in urothelial cancer. The FGFR tyrosine kinase inhibitor erdafitinib has been approved for locally advanced or metastatic urothelial cancer with FGFR2/3 alterations. Despite the initial efficacy of erdafitinib, resistance cannot be avoided. The molecular mechanisms underlying erdafitinib resistance have not been well investigated. Here, genome-wide CRISPR screen is performed and coatomer protein complex subunit α (COPA) is identified as a key target to enhance erdafitinib sensitivity. Functionally, the deficiency of COPA reduces the proliferation of FGFR-altered bladder cancer cells upon erdafitinib treatment. Mechanistically, COPA knockout increases the degradation of leucine-rich pentatricopeptide repeat containing (LRPPRC) protein, leading to reduced inhibitor of DNA binding 3 (ID3) mRNA stability in an m6A-dependent manner. Collectively, these findings reveal a novel mechanism of erdafitinib resistance, providing a potential therapeutic target for FGFR-altered bladder cancer.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2413209"},"PeriodicalIF":14.3000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202413209","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Fibroblast growth factor receptor (FGFR) family aberrations are common in urothelial cancer. The FGFR tyrosine kinase inhibitor erdafitinib has been approved for locally advanced or metastatic urothelial cancer with FGFR2/3 alterations. Despite the initial efficacy of erdafitinib, resistance cannot be avoided. The molecular mechanisms underlying erdafitinib resistance have not been well investigated. Here, genome-wide CRISPR screen is performed and coatomer protein complex subunit α (COPA) is identified as a key target to enhance erdafitinib sensitivity. Functionally, the deficiency of COPA reduces the proliferation of FGFR-altered bladder cancer cells upon erdafitinib treatment. Mechanistically, COPA knockout increases the degradation of leucine-rich pentatricopeptide repeat containing (LRPPRC) protein, leading to reduced inhibitor of DNA binding 3 (ID3) mRNA stability in an m6A-dependent manner. Collectively, these findings reveal a novel mechanism of erdafitinib resistance, providing a potential therapeutic target for FGFR-altered bladder cancer.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.