{"title":"Taste detection of flonicamid in Drosophila melanogaster","authors":"Muhammad Atif, Youngseok Lee","doi":"10.1016/j.ibmb.2025.104302","DOIUrl":null,"url":null,"abstract":"<div><div>Flonicamid, a widely used insecticide, presents an intriguing question: does it function as an antifeedant by directly activating bitter-sensing gustatory receptor neurons (GRNs) in <em>Drosophila melanogaster</em>. Here, we found that electrophysiological recordings revealed that S-type labellar sensilla exhibited strong neuronal responses to flonicamid, while inhibition of bitter-sensing GRNs nullified this response. Genetic screening identified <em>Gr28b</em>, <em>Gr93a</em>, and <em>Gr98b</em> as essential gustatory receptors for flonicamid detection. Isoform-specific rescue experiments confirmed that <em>Gr28b.a</em> is responsible for restoring sensory responses in <em>Gr28b</em> mutants. Proboscis extension response assays demonstrated that wild-type flies avoided flonicamid, whereas <em>Gr28b</em>, <em>Gr93a</em>, and <em>Gr98b</em> mutants failed to. Functional rescue of these mutants restored the behavioral response, confirming the involvement of these receptors in mediating gustatory aversion. Our findings uncover a novel sensory mechanism for detecting flonicamid through specific gustatory receptors and highlight their potential as molecular targets for insect control strategies.</div></div>","PeriodicalId":330,"journal":{"name":"Insect Biochemistry and Molecular Biology","volume":"180 ","pages":"Article 104302"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Biochemistry and Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965174825000463","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Flonicamid, a widely used insecticide, presents an intriguing question: does it function as an antifeedant by directly activating bitter-sensing gustatory receptor neurons (GRNs) in Drosophila melanogaster. Here, we found that electrophysiological recordings revealed that S-type labellar sensilla exhibited strong neuronal responses to flonicamid, while inhibition of bitter-sensing GRNs nullified this response. Genetic screening identified Gr28b, Gr93a, and Gr98b as essential gustatory receptors for flonicamid detection. Isoform-specific rescue experiments confirmed that Gr28b.a is responsible for restoring sensory responses in Gr28b mutants. Proboscis extension response assays demonstrated that wild-type flies avoided flonicamid, whereas Gr28b, Gr93a, and Gr98b mutants failed to. Functional rescue of these mutants restored the behavioral response, confirming the involvement of these receptors in mediating gustatory aversion. Our findings uncover a novel sensory mechanism for detecting flonicamid through specific gustatory receptors and highlight their potential as molecular targets for insect control strategies.
期刊介绍:
This international journal publishes original contributions and mini-reviews in the fields of insect biochemistry and insect molecular biology. Main areas of interest are neurochemistry, hormone and pheromone biochemistry, enzymes and metabolism, hormone action and gene regulation, gene characterization and structure, pharmacology, immunology and cell and tissue culture. Papers on the biochemistry and molecular biology of other groups of arthropods are published if of general interest to the readership. Technique papers will be considered for publication if they significantly advance the field of insect biochemistry and molecular biology in the opinion of the Editors and Editorial Board.