A complete set of cross-correlated relaxation experiments for determining the protein backbone dihedral angles.

IF 1.3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Paulina Bartosińska-Marzec, Bartłomiej Banaś, Clemens Kauffmann, Andreas Beier, Daniel Braun, Irene Ceccolini, Wiktor Koźmiński, Robert Konrat, Anna Zawadzka-Kazimierczuk
{"title":"A complete set of cross-correlated relaxation experiments for determining the protein backbone dihedral angles.","authors":"Paulina Bartosińska-Marzec, Bartłomiej Banaś, Clemens Kauffmann, Andreas Beier, Daniel Braun, Irene Ceccolini, Wiktor Koźmiński, Robert Konrat, Anna Zawadzka-Kazimierczuk","doi":"10.1007/s10858-025-00458-x","DOIUrl":null,"url":null,"abstract":"<p><p>The investigation of structural propensities of proteins is essential for understanding how they function at the molecular level. NMR, offering atomic-scale information, is often the method of choice. One of the available techniques relies on the cross-correlated relaxation (CCR) effect, whose magnitude is related to local spatial conformation. Application of these methods is difficult if the protein under investigation exhibits high mobility, because NMR observables like CCR rates and chemical shifts present themselves as mere averages of an underlying ensemble distribution. Furthermore, relaxation observables are a convolution of structural and dynamical components. Despite these challenges, it is possible to infer the underlying structural ensemble by combining information from several CCR rates with a different geometrical dependence. In this paper, we present a set of eight CCR experiments tailored for proteins of a highly dynamic nature. Analyzed together, they yield a distribution of backbone dihedral angles for each residue of the protein. The experiments were validated on the folded protein ubiquitin using PDB-deposited NMR structures for comparison. Extraordinary peak separation, achieved by evolving four different chemical shifts, allows for the application of this method to intrinsically disordered proteins in future studies.</p>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular NMR","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10858-025-00458-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The investigation of structural propensities of proteins is essential for understanding how they function at the molecular level. NMR, offering atomic-scale information, is often the method of choice. One of the available techniques relies on the cross-correlated relaxation (CCR) effect, whose magnitude is related to local spatial conformation. Application of these methods is difficult if the protein under investigation exhibits high mobility, because NMR observables like CCR rates and chemical shifts present themselves as mere averages of an underlying ensemble distribution. Furthermore, relaxation observables are a convolution of structural and dynamical components. Despite these challenges, it is possible to infer the underlying structural ensemble by combining information from several CCR rates with a different geometrical dependence. In this paper, we present a set of eight CCR experiments tailored for proteins of a highly dynamic nature. Analyzed together, they yield a distribution of backbone dihedral angles for each residue of the protein. The experiments were validated on the folded protein ubiquitin using PDB-deposited NMR structures for comparison. Extraordinary peak separation, achieved by evolving four different chemical shifts, allows for the application of this method to intrinsically disordered proteins in future studies.

用于确定蛋白质骨架二面角的一整套交叉相关松弛实验。
研究蛋白质的结构倾向对于理解它们在分子水平上的功能是至关重要的。提供原子尺度信息的核磁共振通常是首选方法。一种可用的技术依赖于交叉相关弛豫(CCR)效应,其大小与局部空间构象有关。如果所研究的蛋白质表现出高迁移率,则这些方法的应用是困难的,因为核磁共振可观察到的CCR率和化学位移仅表现为潜在系综分布的平均值。此外,松弛观测值是结构和动力分量的卷积。尽管存在这些挑战,但通过结合几种具有不同几何依赖性的CCR速率的信息,可以推断出潜在的结构总体。在本文中,我们提出了一套针对高动态性质的蛋白质量身定制的8个CCR实验。一起分析后,它们得到了蛋白质每个残基的主干二面角分布。利用pdb沉积的核磁共振结构进行比较,验证了折叠蛋白泛素的实验。通过进化四种不同的化学位移实现非凡的峰分离,允许将该方法应用于未来研究中的内在无序蛋白质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomolecular NMR
Journal of Biomolecular NMR 生物-光谱学
CiteScore
6.00
自引率
3.70%
发文量
19
审稿时长
6-12 weeks
期刊介绍: The Journal of Biomolecular NMR provides a forum for publishing research on technical developments and innovative applications of nuclear magnetic resonance spectroscopy for the study of structure and dynamic properties of biopolymers in solution, liquid crystals, solids and mixed environments, e.g., attached to membranes. This may include: Three-dimensional structure determination of biological macromolecules (polypeptides/proteins, DNA, RNA, oligosaccharides) by NMR. New NMR techniques for studies of biological macromolecules. Novel approaches to computer-aided automated analysis of multidimensional NMR spectra. Computational methods for the structural interpretation of NMR data, including structure refinement. Comparisons of structures determined by NMR with those obtained by other methods, e.g. by diffraction techniques with protein single crystals. New techniques of sample preparation for NMR experiments (biosynthetic and chemical methods for isotope labeling, preparation of nutrients for biosynthetic isotope labeling, etc.). An NMR characterization of the products must be included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信