Genome-Wide Silencer Screening Reveals Key Silencer Modulating Reprogramming Efficiency in Mouse Induced Pluripotent Stem Cells.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiusheng Zhu, Lei Huang, Guoli Li, Biao Deng, Xiaoxiao Wang, Hu Yang, Yuanyuan Zhang, Qiuhan Wen, Chao Wang, Jingshu Zhang, Yunxiang Zhao, Kui Li, Yuwen Liu
{"title":"Genome-Wide Silencer Screening Reveals Key Silencer Modulating Reprogramming Efficiency in Mouse Induced Pluripotent Stem Cells.","authors":"Xiusheng Zhu, Lei Huang, Guoli Li, Biao Deng, Xiaoxiao Wang, Hu Yang, Yuanyuan Zhang, Qiuhan Wen, Chao Wang, Jingshu Zhang, Yunxiang Zhao, Kui Li, Yuwen Liu","doi":"10.1002/advs.202408839","DOIUrl":null,"url":null,"abstract":"<p><p>The majority of the mouse genome is composed of non-coding regions, which harbor numerous regulatory sequences essential for gene regulation. While extensive research focuses on enhancers that activate gene expression, the role of silencers that repress gene expression remains less explored. In this study, the first genome-wide identification of silencers in the mouse genome is conducted. In mouse embryonic fibroblasts (MEFs) and embryonic stem cells (mESCs), 89 596 and 115 165 silencers are identified, respectively. These silencers are ubiquitously distributed across the genome and are predominantly associated with low-expression genes. Additionally, these silencers are mainly cell-specific and function by binding to repressive transcription factors (TFs). Further, these silencers are notably enriched with the histone modification H3K9me3. It is observed that the transformation between dual-function silencers and enhancers is correlated with intracellular transcription factor concentrations, accompanied by changes in epigenetic modifications. In terms of biological effects, we have identified silencers that can enhance the induction efficiency of MEFs and influence the pluripotency of mESCs. Collectively, this work offers the first comprehensive silencer landscape in the mouse genome and provides strong evidence for the role of silencers in the induction of induced pluripotent stem cells (iPSCs).</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2408839"},"PeriodicalIF":14.3000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202408839","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The majority of the mouse genome is composed of non-coding regions, which harbor numerous regulatory sequences essential for gene regulation. While extensive research focuses on enhancers that activate gene expression, the role of silencers that repress gene expression remains less explored. In this study, the first genome-wide identification of silencers in the mouse genome is conducted. In mouse embryonic fibroblasts (MEFs) and embryonic stem cells (mESCs), 89 596 and 115 165 silencers are identified, respectively. These silencers are ubiquitously distributed across the genome and are predominantly associated with low-expression genes. Additionally, these silencers are mainly cell-specific and function by binding to repressive transcription factors (TFs). Further, these silencers are notably enriched with the histone modification H3K9me3. It is observed that the transformation between dual-function silencers and enhancers is correlated with intracellular transcription factor concentrations, accompanied by changes in epigenetic modifications. In terms of biological effects, we have identified silencers that can enhance the induction efficiency of MEFs and influence the pluripotency of mESCs. Collectively, this work offers the first comprehensive silencer landscape in the mouse genome and provides strong evidence for the role of silencers in the induction of induced pluripotent stem cells (iPSCs).

全基因组沉默子筛选发现调节小鼠诱导多能干细胞重编程效率的关键沉默子
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信