Sena Ozturk, Alexander R Davis, Colin C Seaton, Louise Male, Sarah J Pike
{"title":"Solvatomorphism of a 2,6-pyridyldicarboxamide-based foldamer.","authors":"Sena Ozturk, Alexander R Davis, Colin C Seaton, Louise Male, Sarah J Pike","doi":"10.1039/d5ob00342c","DOIUrl":null,"url":null,"abstract":"<p><p>A detailed solvatomorphism study conducted on a diamine-terminated 2,6-pyridyldicarboxamide-based foldamer 1 is reported. This investigation establishes the influence of a diverse range of polar and non-polar solvents including chloroform (1A), a trifluorotoluene/dichloromethane mixture (1A), dimethylformamide/diethyl ether (1B), tetrahydrofuran (1·THF), butanone (1·butanone), dichloromethane (1·DCM), a methanol/dichloromethane mixture (1·MeOH) and dimethylsulfoxide (1·DMSO) on the solid-state conformation and crystal packing behaviour of this supramolecular scaffold. Single-crystal X-ray diffraction analysis of the seven solvatomorphs of the studied foldamer (1A, 1B, 1·DCM, 1·THF, 1·butanone, 1·MeOH and 1·DMSO) identified that 1·DCM, 1·THF, 1·butanone, 1·MeOH and 1·DMSO form supramolecular aggregates (<i>e.g.</i>, channels/cavities) which incorporate solvent molecules within the voids of the system, leading them to adopt channels of differing dimensions between 3.5 and 9.0 Å. Solid-state analysis identified that a diverse array of intermolecular non-covalent interactions form between the foldamer and the solvent molecule, including N-H⋯O, N-H⋯Cl, O-H⋯O, N-H⋯Cl and C-H⋯O hydrogen-bonding interactions, stabilising the formation of these solvent-mediated channel aggregates within the different solvatomorphs of the studied foldamer. We envisage that these solvatomorphism studies will facilitate the future design of foldamers, particularly given the emerging solid-state applications of foldamers which could hold relevance in the field of crystal engineering or for the uptake of small molecules for long-term use in energy storage and materials chemistry.</p>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic & Biomolecular Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5ob00342c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
A detailed solvatomorphism study conducted on a diamine-terminated 2,6-pyridyldicarboxamide-based foldamer 1 is reported. This investigation establishes the influence of a diverse range of polar and non-polar solvents including chloroform (1A), a trifluorotoluene/dichloromethane mixture (1A), dimethylformamide/diethyl ether (1B), tetrahydrofuran (1·THF), butanone (1·butanone), dichloromethane (1·DCM), a methanol/dichloromethane mixture (1·MeOH) and dimethylsulfoxide (1·DMSO) on the solid-state conformation and crystal packing behaviour of this supramolecular scaffold. Single-crystal X-ray diffraction analysis of the seven solvatomorphs of the studied foldamer (1A, 1B, 1·DCM, 1·THF, 1·butanone, 1·MeOH and 1·DMSO) identified that 1·DCM, 1·THF, 1·butanone, 1·MeOH and 1·DMSO form supramolecular aggregates (e.g., channels/cavities) which incorporate solvent molecules within the voids of the system, leading them to adopt channels of differing dimensions between 3.5 and 9.0 Å. Solid-state analysis identified that a diverse array of intermolecular non-covalent interactions form between the foldamer and the solvent molecule, including N-H⋯O, N-H⋯Cl, O-H⋯O, N-H⋯Cl and C-H⋯O hydrogen-bonding interactions, stabilising the formation of these solvent-mediated channel aggregates within the different solvatomorphs of the studied foldamer. We envisage that these solvatomorphism studies will facilitate the future design of foldamers, particularly given the emerging solid-state applications of foldamers which could hold relevance in the field of crystal engineering or for the uptake of small molecules for long-term use in energy storage and materials chemistry.
期刊介绍:
Organic & Biomolecular Chemistry is an international journal using integrated research in chemistry-organic chemistry. Founded in 2003 by the Royal Society of Chemistry, the journal is published in Semimonthly issues and has been indexed by SCIE, a leading international database. The journal focuses on the key research and cutting-edge progress in the field of chemistry-organic chemistry, publishes and reports the research results in this field in a timely manner, and is committed to becoming a window and platform for rapid academic exchanges among peers in this field. The journal's impact factor in 2023 is 2.9, and its CiteScore is 5.5.