UV Photodissociation Dynamics of Organic Hydroperoxides: Experiment and Theory.

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry A Pub Date : 2025-04-03 Epub Date: 2025-03-20 DOI:10.1021/acs.jpca.5c00762
Meijun Zou, Emmanuel Moya Cruz, Christopher A Sojdak, Marisa C Kozlowski, Tolga N V Karsili, Marsha I Lester
{"title":"UV Photodissociation Dynamics of Organic Hydroperoxides: Experiment and Theory.","authors":"Meijun Zou, Emmanuel Moya Cruz, Christopher A Sojdak, Marisa C Kozlowski, Tolga N V Karsili, Marsha I Lester","doi":"10.1021/acs.jpca.5c00762","DOIUrl":null,"url":null,"abstract":"<p><p>The UV photodissociation dynamics of three organic hydroperoxides (ROOH, <i>R</i> = <i>tert</i>-butyl, cyclopentyl, and cyclohexyl) are examined experimentally at 282 nm utilizing velocity map imaging of the OH X<sup>2</sup>Π<sub>3/2</sub> (v″ = 0, J″) products. The three systems have similar O-O bond dissociation energies based on W1BD calculations and thus similar energy release to products. In each case, the experimental total kinetic energy release (TKER) distributions are bimodal, composed of narrow low and broad high TKER components extending over the available energy. The associated angular distributions of the OH X<sup>2</sup>Π products are isotropic, differing dramatically from those predicted for direct photodissociation. Complementary theoretical calculations map the relaxed potential energy profile for each ROOH along the steeply repulsive excited state (S<sub>1</sub>) potential leading to RO + OH products. Low CCOO torsional barriers predicted along the ROOH dissociation pathway enable the OH products to recoil in many different directions, yielding isotropic angular distributions. Simple models of photodissociation suggest that the low TKER component arises from internal conversion to the ground state (S<sub>0</sub>) potential, leading to a common RO + OH product asymptote. A simple impulsive model for dissociation captures some aspects of the high TKER component but neglects significant geometric changes in the alkyl substituent from ROOH to the RO product. This study provides new insight into the solar photolysis of organic hydroperoxides and the regeneration of OH radicals in atmospheric oxidation cycles.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"3052-3062"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.5c00762","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The UV photodissociation dynamics of three organic hydroperoxides (ROOH, R = tert-butyl, cyclopentyl, and cyclohexyl) are examined experimentally at 282 nm utilizing velocity map imaging of the OH X2Π3/2 (v″ = 0, J″) products. The three systems have similar O-O bond dissociation energies based on W1BD calculations and thus similar energy release to products. In each case, the experimental total kinetic energy release (TKER) distributions are bimodal, composed of narrow low and broad high TKER components extending over the available energy. The associated angular distributions of the OH X2Π products are isotropic, differing dramatically from those predicted for direct photodissociation. Complementary theoretical calculations map the relaxed potential energy profile for each ROOH along the steeply repulsive excited state (S1) potential leading to RO + OH products. Low CCOO torsional barriers predicted along the ROOH dissociation pathway enable the OH products to recoil in many different directions, yielding isotropic angular distributions. Simple models of photodissociation suggest that the low TKER component arises from internal conversion to the ground state (S0) potential, leading to a common RO + OH product asymptote. A simple impulsive model for dissociation captures some aspects of the high TKER component but neglects significant geometric changes in the alkyl substituent from ROOH to the RO product. This study provides new insight into the solar photolysis of organic hydroperoxides and the regeneration of OH radicals in atmospheric oxidation cycles.

有机氢过氧化物的紫外光解动力学:实验与理论。
利用OH X2Π3/2 (v″= 0,J″)产物的速度图成像,研究了三种有机氢过氧化物(ROOH, R =叔丁基,环戊基和环己基)在282 nm下的紫外光解动力学。根据W1BD计算,这三种体系具有相似的O-O键离解能,因此释放到产物的能量相似。在每种情况下,实验总动能释放(TKER)分布都是双峰的,由在可用能量上延伸的窄低和宽高的TKER分量组成。OH X2Π产物的相关角分布是各向同性的,与直接光解的预测有很大不同。互补的理论计算绘制了每个ROOH沿着导致RO + OH产物的陡峭排斥激发态(S1)势的松弛势能分布图。沿ROOH解离途径预测的低CCOO扭转势垒使OH产物在许多不同的方向上反冲,产生各向同性的角分布。简单的光解模型表明,低TKER组分来自于内部向基态(S0)势的转换,从而导致常见的RO + OH产物渐近线。一个简单的脉冲解离模型捕获了高TKER组分的某些方面,但忽略了从ROOH到RO产物的烷基取代基的显著几何变化。该研究为有机氢过氧化物的太阳光解和大气氧化循环中OH自由基的再生提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信