{"title":"Global Profiling of Lactylation Proteomics and Specific Lactylated Site Validation in Rheumatoid Arthritis Patients.","authors":"Jiaqi Hu, Zhengyi Jin, Ying Gao, Qilong Liu, Yiyi Yu, Ruina Kong, Dongbao Zhao, Jie Gao","doi":"10.1021/acs.jproteome.4c00680","DOIUrl":null,"url":null,"abstract":"<p><p>Protein lactylation is a novel post-translational modification that has rarely been investigated in rheumatoid arthritis (RA). This study aimed to explore lactylation proteomics in RA patients and validate sorted candidate lactylation sites. Synovial tissues from ten RA and six osteoarthritis (OA) patients were subjected to lactylation proteomics via affinity enrichment and LC-MS/MS. Four candidate lactylated modification sites were validated by immunoprecipitation. Totally, 566 sites and 250 proteins with lactylated modifications in RA patients and 548 sites and 220 proteins with lactylated modifications in OA patients were identified. By comparison, 24 upregulated but 2 downregulated lactylated modification sites and 18 upregulated but 1 downregulated lactylated modification protein were discovered in RA patients versus OA patients. The dysregulated lactylated proteins were mainly enriched in biological processes such as positive regulation of plasma membrane repair by GO analysis; pathways such as neutrophil extracellular trap formation by KEGG analysis; and two metabolism-related items by COG/KOG analysis. Immunoprecipitation confirmed that FTH1-K69la (<i>P</i> = 0007) and PKM2-K166la (<i>P</i> = 0.003), but not ANXA2-K115la (<i>P</i> = 0.127) or ANXA5-K76la (<i>P</i> = 0.361), were more abundant in RA patients versus OA patients. Moreover, FTH1-K69la was positively correlated with erythrocyte sedimentation rate (ESR) in RA patients (<i>P</i> = 0.037). Conclusively, this study describes a general landscape of lactylation proteomics in the RA.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.4c00680","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Protein lactylation is a novel post-translational modification that has rarely been investigated in rheumatoid arthritis (RA). This study aimed to explore lactylation proteomics in RA patients and validate sorted candidate lactylation sites. Synovial tissues from ten RA and six osteoarthritis (OA) patients were subjected to lactylation proteomics via affinity enrichment and LC-MS/MS. Four candidate lactylated modification sites were validated by immunoprecipitation. Totally, 566 sites and 250 proteins with lactylated modifications in RA patients and 548 sites and 220 proteins with lactylated modifications in OA patients were identified. By comparison, 24 upregulated but 2 downregulated lactylated modification sites and 18 upregulated but 1 downregulated lactylated modification protein were discovered in RA patients versus OA patients. The dysregulated lactylated proteins were mainly enriched in biological processes such as positive regulation of plasma membrane repair by GO analysis; pathways such as neutrophil extracellular trap formation by KEGG analysis; and two metabolism-related items by COG/KOG analysis. Immunoprecipitation confirmed that FTH1-K69la (P = 0007) and PKM2-K166la (P = 0.003), but not ANXA2-K115la (P = 0.127) or ANXA5-K76la (P = 0.361), were more abundant in RA patients versus OA patients. Moreover, FTH1-K69la was positively correlated with erythrocyte sedimentation rate (ESR) in RA patients (P = 0.037). Conclusively, this study describes a general landscape of lactylation proteomics in the RA.
期刊介绍:
Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".