Theoretical study of hydrogen/methyl chalcogenides (H2X and CH3XH, X = S, Se) adsorption on pristine/doped graphene quantum dots

IF 2.2 4区 化学 Q2 Engineering
Kerida Ruamdee, Natthakit Singhanatkaisi, Yuthana Tantirungrotechai
{"title":"Theoretical study of hydrogen/methyl chalcogenides (H2X and CH3XH, X = S, Se) adsorption on pristine/doped graphene quantum dots","authors":"Kerida Ruamdee,&nbsp;Natthakit Singhanatkaisi,&nbsp;Yuthana Tantirungrotechai","doi":"10.1007/s11696-024-03875-8","DOIUrl":null,"url":null,"abstract":"<div><p>The adsorption of hydrogen and methyl chalcogenides on pristine and B,N-doped graphene quantum dot models was investigated using B97-3c model to understand their interactions and orientations on the considered graphene surfaces. Molecular orientation was found to significantly influence adsorption energies, surpassing the impact of adsorption position. H₂S prefers an inverse-V configuration, while H₂Se preferred an L-shape configuration, with one hydrogen parallel to the pristine surface. Both methanethiol and methaneselenol prefer the carbon-chalcogen bond nearly parallel to the surface. Doping with boron-enhanced adsorption energies compared to pristine and N-doped GQDs. Non-covalent interaction (NCI) and atoms-in-molecules (AIM) analyses revealed weak interactions, primarily involving carbon atoms. However, in certain cases, interactions with the doped boron atom were revealed as the bond path. Selenium compounds exhibit less selectivity in their adsorption orientations, as evidenced by the smaller energy difference between their two most stable configurations compared to sulfide. Charge transfer was determined to play a minor role in these systems.</p></div>","PeriodicalId":513,"journal":{"name":"Chemical Papers","volume":"79 3","pages":"1577 - 1600"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Papers","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11696-024-03875-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The adsorption of hydrogen and methyl chalcogenides on pristine and B,N-doped graphene quantum dot models was investigated using B97-3c model to understand their interactions and orientations on the considered graphene surfaces. Molecular orientation was found to significantly influence adsorption energies, surpassing the impact of adsorption position. H₂S prefers an inverse-V configuration, while H₂Se preferred an L-shape configuration, with one hydrogen parallel to the pristine surface. Both methanethiol and methaneselenol prefer the carbon-chalcogen bond nearly parallel to the surface. Doping with boron-enhanced adsorption energies compared to pristine and N-doped GQDs. Non-covalent interaction (NCI) and atoms-in-molecules (AIM) analyses revealed weak interactions, primarily involving carbon atoms. However, in certain cases, interactions with the doped boron atom were revealed as the bond path. Selenium compounds exhibit less selectivity in their adsorption orientations, as evidenced by the smaller energy difference between their two most stable configurations compared to sulfide. Charge transfer was determined to play a minor role in these systems.

棱柱形/掺杂石墨烯量子点上的氢/甲基铬化物(H2X 和 CH3XH,X = S、Se)吸附理论研究
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Papers
Chemical Papers Chemical Engineering-General Chemical Engineering
CiteScore
3.30
自引率
4.50%
发文量
590
期刊介绍: Chemical Papers is a peer-reviewed, international journal devoted to basic and applied chemical research. It has a broad scope covering the chemical sciences, but favors interdisciplinary research and studies that bring chemistry together with other disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信