Fábio Pedroso de Lima, Cátia Alves, Rita Gomes-Dias, Marta Fernandes, Bárbara Vieira, Rui Rodrigues, Jorge Padrão, Andrea Zille
{"title":"An Eco-friendly Approach for the Separation and Reusage of Pre-consumer Polycotton Textile Waste","authors":"Fábio Pedroso de Lima, Cátia Alves, Rita Gomes-Dias, Marta Fernandes, Bárbara Vieira, Rui Rodrigues, Jorge Padrão, Andrea Zille","doi":"10.1007/s10924-025-03500-z","DOIUrl":null,"url":null,"abstract":"<div><p>One of the most challenging features of textile recycling is the widespread use of mixed fibre blends, which hardens the task of effective separation. A mixture of aqueous sodium hydroxide and a cosolvent was applied to a polycotton pre-consumer fabric to promote the chemical separation of polyester (PES) and cotton (CO). The feasibility of reusing the hydrolytic solutions was tested, where dimethyl sulfoxide (DMSO) and 2-propanol allowed the reusage of the hydrolytic solution for up to 3 consecutive cycles when applied to pristine material. The recovery of pure terephthalic acid (TPA), after treatment at 50 °C followed by vacuum filtration, achieved yields ranging from 65 to 69%. No further purification was required in 75% of the tested conditions. Through this environmentally sustainable procedure, a method was proposed that could facilitate the development of a scalable process for the TPA recovery from polycotton textiles. This approach aims to reduce both textile waste production and the need for the <i>de novo</i> synthesis of TPA.</p></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"33 4","pages":"1847 - 1863"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10924-025-03500-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-025-03500-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
One of the most challenging features of textile recycling is the widespread use of mixed fibre blends, which hardens the task of effective separation. A mixture of aqueous sodium hydroxide and a cosolvent was applied to a polycotton pre-consumer fabric to promote the chemical separation of polyester (PES) and cotton (CO). The feasibility of reusing the hydrolytic solutions was tested, where dimethyl sulfoxide (DMSO) and 2-propanol allowed the reusage of the hydrolytic solution for up to 3 consecutive cycles when applied to pristine material. The recovery of pure terephthalic acid (TPA), after treatment at 50 °C followed by vacuum filtration, achieved yields ranging from 65 to 69%. No further purification was required in 75% of the tested conditions. Through this environmentally sustainable procedure, a method was proposed that could facilitate the development of a scalable process for the TPA recovery from polycotton textiles. This approach aims to reduce both textile waste production and the need for the de novo synthesis of TPA.
期刊介绍:
The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.