A Novel Machine Learning-Driven Approach to High Throughput Mechanical Testing

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
JOM Pub Date : 2025-01-16 DOI:10.1007/s11837-024-07063-7
Tongjun Niu, Ross Lee, Sebastian Lam, Joseph Hafen, Steven Lukow, Nan Li, Peter Hosemann, Jonathan Gigax
{"title":"A Novel Machine Learning-Driven Approach to High Throughput Mechanical Testing","authors":"Tongjun Niu,&nbsp;Ross Lee,&nbsp;Sebastian Lam,&nbsp;Joseph Hafen,&nbsp;Steven Lukow,&nbsp;Nan Li,&nbsp;Peter Hosemann,&nbsp;Jonathan Gigax","doi":"10.1007/s11837-024-07063-7","DOIUrl":null,"url":null,"abstract":"<div><p>Mechanical testing is a critical but often protracted process for evaluating materials. This study demonstrates a novel high-throughput approach that integrates femtosecond laser machining for rapid sample preparation, automated tensile testing of specimen arrays, and machine learning techniques for efficient data analysis. 316L stainless steel and additively manufactured grade 91 steel were used to fashion miniature tensile specimens. The mechanical properties were automatically extracted from the ensuing stress-strain curves using both a supervised deep learning segmentation model (U-Net) and unsupervised clustering methods (k-means, DBSCAN). While all techniques performed acceptably on the more homogeneous 316L samples, the trained U-Net showed superior robustness and accuracy when analyzing the highly heterogeneous grade 91 specimens, with errors 2–3 times lower than the unsupervised approaches compared to manual analysis. The initial expense incurred generating training data for the U-Net was offset by significantly decreased analysis time and improved consistency. This unified methodology, combining machining, automated testing, and machine learning, provides an accelerated workflow for investigating mechanical properties of both additively manufactured and conventional alloys.</p></div>","PeriodicalId":605,"journal":{"name":"JOM","volume":"77 4","pages":"2121 - 2133"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOM","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11837-024-07063-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Mechanical testing is a critical but often protracted process for evaluating materials. This study demonstrates a novel high-throughput approach that integrates femtosecond laser machining for rapid sample preparation, automated tensile testing of specimen arrays, and machine learning techniques for efficient data analysis. 316L stainless steel and additively manufactured grade 91 steel were used to fashion miniature tensile specimens. The mechanical properties were automatically extracted from the ensuing stress-strain curves using both a supervised deep learning segmentation model (U-Net) and unsupervised clustering methods (k-means, DBSCAN). While all techniques performed acceptably on the more homogeneous 316L samples, the trained U-Net showed superior robustness and accuracy when analyzing the highly heterogeneous grade 91 specimens, with errors 2–3 times lower than the unsupervised approaches compared to manual analysis. The initial expense incurred generating training data for the U-Net was offset by significantly decreased analysis time and improved consistency. This unified methodology, combining machining, automated testing, and machine learning, provides an accelerated workflow for investigating mechanical properties of both additively manufactured and conventional alloys.

求助全文
约1分钟内获得全文 求助全文
来源期刊
JOM
JOM 工程技术-材料科学:综合
CiteScore
4.50
自引率
3.80%
发文量
540
审稿时长
2.8 months
期刊介绍: JOM is a technical journal devoted to exploring the many aspects of materials science and engineering. JOM reports scholarly work that explores the state-of-the-art processing, fabrication, design, and application of metals, ceramics, plastics, composites, and other materials. In pursuing this goal, JOM strives to balance the interests of the laboratory and the marketplace by reporting academic, industrial, and government-sponsored work from around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信