Chemical synthesis of Pt/rare-earth nanoalloys with exclusive ligand effect boosting oxygen electrocatalysis

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ya-Feng Zhang, Yan-Yan Zhao, Kai Ye, Yang Zhao, Si Zhou, Feng Yin
{"title":"Chemical synthesis of Pt/rare-earth nanoalloys with exclusive ligand effect boosting oxygen electrocatalysis","authors":"Ya-Feng Zhang,&nbsp;Yan-Yan Zhao,&nbsp;Kai Ye,&nbsp;Yang Zhao,&nbsp;Si Zhou,&nbsp;Feng Yin","doi":"10.1007/s12598-024-03059-z","DOIUrl":null,"url":null,"abstract":"<div><p>Pt–rare-earth (PtRE) alloys are considered to be highly promising catalysts for oxygen reduction reaction (ORR) in acidic electrolytes. However, the wet-chemical synthesis of PtRE nanoalloys still faces significant challenges. The precise reaction mechanism for ORR of these catalysts is still unclear on significant aspects involving the rate-determining step and the nature of the ligand effect. Herein, we report a class of solvothermal synthesis of PtRE (RE is Dy or La) nanoalloys. Such PtRE nanoalloys here are active and stable in acidic media, with both high mass activities enhanced by 2–5 times relative to commercial Pt/C catalyst and high stabilities indicative of the little activity decay and negligible structure change after 10,000 cycles. Density functional theory calculations firmly confirm that the ligand effect of RE elements accelerates an O–O bond scission and steers the rate-determining steps from OH* + H<sup>+</sup>  + e<sup>−</sup> → H<sub>2</sub>O (on pure Pt surface) to HOOH* + H<sup>+</sup>  + e<sup>−</sup> → OH* + H<sub>2</sub>O (on the PtRE nanoalloy surface) for the fast reaction kinetics, which could be fine-tuned by regulating the RE electronic structures and consequently endows the maximal rate of ORR catalysis with PtDy alloy catalysts.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 3","pages":"1777 - 1788"},"PeriodicalIF":9.6000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-024-03059-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Pt–rare-earth (PtRE) alloys are considered to be highly promising catalysts for oxygen reduction reaction (ORR) in acidic electrolytes. However, the wet-chemical synthesis of PtRE nanoalloys still faces significant challenges. The precise reaction mechanism for ORR of these catalysts is still unclear on significant aspects involving the rate-determining step and the nature of the ligand effect. Herein, we report a class of solvothermal synthesis of PtRE (RE is Dy or La) nanoalloys. Such PtRE nanoalloys here are active and stable in acidic media, with both high mass activities enhanced by 2–5 times relative to commercial Pt/C catalyst and high stabilities indicative of the little activity decay and negligible structure change after 10,000 cycles. Density functional theory calculations firmly confirm that the ligand effect of RE elements accelerates an O–O bond scission and steers the rate-determining steps from OH* + H+  + e → H2O (on pure Pt surface) to HOOH* + H+  + e → OH* + H2O (on the PtRE nanoalloy surface) for the fast reaction kinetics, which could be fine-tuned by regulating the RE electronic structures and consequently endows the maximal rate of ORR catalysis with PtDy alloy catalysts.

Graphical abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信