Despite the simultaneous presence of organic materials may have technical advantages in shielding delicate metallic objects from corrosive conditions, little is known concerning the way organic compounds interact and the way the functional protective film is formed. For this purpose, pyrazole-pyran-pyrimidine derivative (PPP) was synthesized and employed as potential anti-corrosive inhibitor for aluminium (Al) in 1 M HCl. The results demonstrate that PPP has inhibitory efficiency of 96.8% at 400 mg/L. The PPP adsorption on the surface of Al follows the Langmuir adsorption isotherm, which takes into account both chemisorption and physisorption. Electrochemical impedance spectroscopy (EIS) results demonstrate that charge transfer resistance and double-layer capacitance increases and decreases with the addition of PPP. The adsorption of PPP was confirmed by the atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and contact angle micrographs. Furthermore, density functional theory (DFT) and molecular dynamic simulation (MD) study supports the adsorption potential of PPP over the Al (111) and Al2O3 (111) surfaces.