The non-relativistic effective field theory of dark matter-electron interactions

IF 5.5 1区 物理与天体物理 Q1 Physics and Astronomy
Gordan Krnjaic, Duncan Rocha, Tanner Trickle
{"title":"The non-relativistic effective field theory of dark matter-electron interactions","authors":"Gordan Krnjaic,&nbsp;Duncan Rocha,&nbsp;Tanner Trickle","doi":"10.1007/JHEP03(2025)165","DOIUrl":null,"url":null,"abstract":"<p>Electronic excitations in atomic, molecular, and crystal targets are at the forefront of the ongoing search for light, sub-GeV dark matter (DM). In many light DM-electron interactions the energy and momentum deposited is much smaller than the electron mass, motivating a non-relativistic (NR) description of the electron. Thus, for any target, light DM-electron phenomenology relies on understanding the interactions between the DM and electron in the NR limit. In this work we derive the NR effective field theory (EFT) of general DM-electron interactions from a top-down perspective, starting from general high-energy DM-electron interaction Lagrangians. This provides an explicit connection between high-energy theories and their low-energy phenomenology in electron excitation based experiments. Furthermore, we derive Feynman rules for the DM-electron NR EFT, allowing observables to be computed diagrammatically, which can systematically explain the presence of in-medium screening effects in general DM models. We use these Feynman rules to compute absorption, scattering, and dark Thomson scattering rates for a wide variety of high-energy DM models.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 3","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP03(2025)165.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP03(2025)165","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Electronic excitations in atomic, molecular, and crystal targets are at the forefront of the ongoing search for light, sub-GeV dark matter (DM). In many light DM-electron interactions the energy and momentum deposited is much smaller than the electron mass, motivating a non-relativistic (NR) description of the electron. Thus, for any target, light DM-electron phenomenology relies on understanding the interactions between the DM and electron in the NR limit. In this work we derive the NR effective field theory (EFT) of general DM-electron interactions from a top-down perspective, starting from general high-energy DM-electron interaction Lagrangians. This provides an explicit connection between high-energy theories and their low-energy phenomenology in electron excitation based experiments. Furthermore, we derive Feynman rules for the DM-electron NR EFT, allowing observables to be computed diagrammatically, which can systematically explain the presence of in-medium screening effects in general DM models. We use these Feynman rules to compute absorption, scattering, and dark Thomson scattering rates for a wide variety of high-energy DM models.

暗物质-电子相互作用的非相对论有效场论
原子,分子和晶体目标中的电子激发是正在进行的寻找光,亚gev暗物质(DM)的前沿。在许多光dm -电子相互作用中,沉积的能量和动量比电子质量小得多,激发了电子的非相对论性描述。因此,对于任何目标,轻DM-电子现象学依赖于理解NR极限下DM和电子之间的相互作用。本文从一般高能dm -电子相互作用拉格朗日量出发,从自上而下的角度推导了一般dm -电子相互作用的NR有效场论。这在基于电子激发的实验中提供了高能理论与其低能现象学之间的明确联系。此外,我们推导了DM-电子NR EFT的Feynman规则,允许用图表计算可观测值,这可以系统地解释一般DM模型中存在的介质筛选效应。我们使用这些费曼规则来计算各种高能DM模型的吸收、散射和暗汤姆逊散射率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信