Luis F. Alday, Maria Nocchi, Romain Ruzziconi, Akshay Yelleshpur Srikant
{"title":"Carrollian amplitudes from holographic correlators","authors":"Luis F. Alday, Maria Nocchi, Romain Ruzziconi, Akshay Yelleshpur Srikant","doi":"10.1007/JHEP03(2025)158","DOIUrl":null,"url":null,"abstract":"<p>Carrollian amplitudes are flat space amplitudes written in position space at null infinity which can be re-interpreted as correlators in a putative dual Carrollian CFT. We argue that these amplitudes are the natural objects obtained in the flat space limit of AdS Lorentzian boundary correlators. The flat limit is taken entirely in position space by introducing Bondi coordinates in the bulk. From the bulk perspective, this procedure makes it manifest that the flat limit of any Witten diagram is the corresponding flat space Feynman diagram. It also makes explicit the fact that the flat limit in the bulk is implemented by a Carrollian limit at the boundary. We systematically analyse tree-level two, three and four-point correlators. Familiar features such as the distributional nature of Carrollian amplitudes and the presence of a bulk point singularity arise naturally as a consequence of requiring a finite and non-trivial Carrollian limit.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 3","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP03(2025)158.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP03(2025)158","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Carrollian amplitudes are flat space amplitudes written in position space at null infinity which can be re-interpreted as correlators in a putative dual Carrollian CFT. We argue that these amplitudes are the natural objects obtained in the flat space limit of AdS Lorentzian boundary correlators. The flat limit is taken entirely in position space by introducing Bondi coordinates in the bulk. From the bulk perspective, this procedure makes it manifest that the flat limit of any Witten diagram is the corresponding flat space Feynman diagram. It also makes explicit the fact that the flat limit in the bulk is implemented by a Carrollian limit at the boundary. We systematically analyse tree-level two, three and four-point correlators. Familiar features such as the distributional nature of Carrollian amplitudes and the presence of a bulk point singularity arise naturally as a consequence of requiring a finite and non-trivial Carrollian limit.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).