Enhanced interaction and biosensing properties of dopamine molecule over the surface of Ag-decorated arsenene nanosheets: A DFT study

IF 2.2 4区 化学 Q2 Engineering
Khalid Mujasam Batoo, Subbulakshmi Ganesan, I. A. Ariffin, Madan Lal, Rajni Verma, Safaa Mohammed Ibrahim, Muhammad Farzik Ijaz, Merwa Alhadrawi, Laith Abualigah
{"title":"Enhanced interaction and biosensing properties of dopamine molecule over the surface of Ag-decorated arsenene nanosheets: A DFT study","authors":"Khalid Mujasam Batoo,&nbsp;Subbulakshmi Ganesan,&nbsp;I. A. Ariffin,&nbsp;Madan Lal,&nbsp;Rajni Verma,&nbsp;Safaa Mohammed Ibrahim,&nbsp;Muhammad Farzik Ijaz,&nbsp;Merwa Alhadrawi,&nbsp;Laith Abualigah","doi":"10.1007/s11696-025-03891-2","DOIUrl":null,"url":null,"abstract":"<div><p>The investigation of adsorption properties of dopamine has aroused significant attention in search for the design of effective biosensors. In this work, arsenene-based biosensors functionalized with Ag atoms are modeled and optimized using DFT calculations. The adsorption and surface reactivity of dopamine molecule can be enhanced over the Ag-functionalized arsenene nanostructures compared with the pristine systems. Charge density difference plots and total charge distribution analysis indicate the significant accumulation of charge densities over the adsorbed Ag atom and dopamine molecule. Compared with pure arsenene, surface modification by Ag adatom enhances the reactivity of arsenene, which is very conducive to biosensing of dopamine by arsenene surface. Moreover, in the PDOS analysis, there are great peak overlaps between Ag–O and Ag–N atoms, confirming the formation of chemical bonds between the Ag and O or N atoms. Our results indicate the substantial efficiency of Ag-functionalized arsenene nanosheets for sensing dopamine molecules.</p></div>","PeriodicalId":513,"journal":{"name":"Chemical Papers","volume":"79 3","pages":"1843 - 1857"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Papers","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11696-025-03891-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The investigation of adsorption properties of dopamine has aroused significant attention in search for the design of effective biosensors. In this work, arsenene-based biosensors functionalized with Ag atoms are modeled and optimized using DFT calculations. The adsorption and surface reactivity of dopamine molecule can be enhanced over the Ag-functionalized arsenene nanostructures compared with the pristine systems. Charge density difference plots and total charge distribution analysis indicate the significant accumulation of charge densities over the adsorbed Ag atom and dopamine molecule. Compared with pure arsenene, surface modification by Ag adatom enhances the reactivity of arsenene, which is very conducive to biosensing of dopamine by arsenene surface. Moreover, in the PDOS analysis, there are great peak overlaps between Ag–O and Ag–N atoms, confirming the formation of chemical bonds between the Ag and O or N atoms. Our results indicate the substantial efficiency of Ag-functionalized arsenene nanosheets for sensing dopamine molecules.

增强多巴胺分子在银饰砷纳米片表面的相互作用和生物传感特性:DFT 研究
对多巴胺吸附特性的研究引起了人们对设计有效生物传感器的极大关注。在这项研究中,利用 DFT 计算对砷原子功能化的生物传感器进行了建模和优化。与原始体系相比,银功能化砷烯纳米结构对多巴胺分子的吸附和表面活性都有所增强。电荷密度差图和总电荷分布分析表明,电荷密度在吸附的银原子和多巴胺分子上显著累积。与纯砷烯相比,银原子的表面修饰增强了砷烯的反应活性,这非常有利于砷烯表面对多巴胺的生物传感。此外,在 PDOS 分析中,Ag-O 原子和 Ag-N 原子间有很大的峰重叠,证实了 Ag 与 O 或 N 原子间形成了化学键。我们的研究结果表明,银功能化砷烯纳米片对多巴胺分子的传感具有很高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Papers
Chemical Papers Chemical Engineering-General Chemical Engineering
CiteScore
3.30
自引率
4.50%
发文量
590
期刊介绍: Chemical Papers is a peer-reviewed, international journal devoted to basic and applied chemical research. It has a broad scope covering the chemical sciences, but favors interdisciplinary research and studies that bring chemistry together with other disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信