Wettability alteration of closed glass microfluidic devices by in situ plasma

IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION
Viktor Gredicak, Claire Douat, Aneta Slodczyk, Sébastien Dozias, Sophie Roman
{"title":"Wettability alteration of closed glass microfluidic devices by in situ plasma","authors":"Viktor Gredicak,&nbsp;Claire Douat,&nbsp;Aneta Slodczyk,&nbsp;Sébastien Dozias,&nbsp;Sophie Roman","doi":"10.1007/s10404-025-02793-9","DOIUrl":null,"url":null,"abstract":"<div><p>Experimental research on microfluidic devices requires adequate control over surface parameters like wettability. Plasma has already been proven to be a promising tool for the control and alteration of the wettability of solid surfaces, yet its propagation in microfluidic devices and treatment stability remains challenging. Our idea is to produce and propagate an atmospheric pressure helium plasma directly into closed micrometer-size glass channels for in situ wettability treatment. This approach enables better control over the treatment parameters compared to conventional treatments in low-pressure chamber-type plasma reactors. With a homemade kHz dielectric barrier discharge-like setup, we successfully propagated plasma through a <span>\\(4\\,\\hbox {cm}\\)</span> long rectangular microchannel of uniform depth (<span>\\(100\\,\\upmu \\hbox {m}\\)</span>) and variable width (250–500 <span>\\(\\,\\upmu \\hbox {m}\\)</span>). Results obtained by in situ contact angle measurement on images indicate uniform wettability treatment with increased hydrophilic properties after only 1 min of treatment. The wettability achieved on a glass with our setup offers stability for up to 70 days depending on the plasma treatment and storage parameters. Contact angle results are further supported with X-ray photoelectron spectroscopy (XPS) surface analysis which revealed that the two effective mechanisms for wettability alteration are cleaning and surface functionalization.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"29 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10404-025-02793-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-025-02793-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Experimental research on microfluidic devices requires adequate control over surface parameters like wettability. Plasma has already been proven to be a promising tool for the control and alteration of the wettability of solid surfaces, yet its propagation in microfluidic devices and treatment stability remains challenging. Our idea is to produce and propagate an atmospheric pressure helium plasma directly into closed micrometer-size glass channels for in situ wettability treatment. This approach enables better control over the treatment parameters compared to conventional treatments in low-pressure chamber-type plasma reactors. With a homemade kHz dielectric barrier discharge-like setup, we successfully propagated plasma through a \(4\,\hbox {cm}\) long rectangular microchannel of uniform depth (\(100\,\upmu \hbox {m}\)) and variable width (250–500 \(\,\upmu \hbox {m}\)). Results obtained by in situ contact angle measurement on images indicate uniform wettability treatment with increased hydrophilic properties after only 1 min of treatment. The wettability achieved on a glass with our setup offers stability for up to 70 days depending on the plasma treatment and storage parameters. Contact angle results are further supported with X-ray photoelectron spectroscopy (XPS) surface analysis which revealed that the two effective mechanisms for wettability alteration are cleaning and surface functionalization.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microfluidics and Nanofluidics
Microfluidics and Nanofluidics 工程技术-纳米科技
CiteScore
4.80
自引率
3.60%
发文量
97
审稿时长
2 months
期刊介绍: Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include: 1.000 Fundamental principles of micro- and nanoscale phenomena like, flow, mass transport and reactions 3.000 Theoretical models and numerical simulation with experimental and/or analytical proof 4.000 Novel measurement & characterization technologies 5.000 Devices (actuators and sensors) 6.000 New unit-operations for dedicated microfluidic platforms 7.000 Lab-on-a-Chip applications 8.000 Microfabrication technologies and materials Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信