{"title":"Real-time electrochemical monitoring sensor for pollutant degradation through galvanic cell system","authors":"Wu-Xiang Zhang, Zi-Han Li, Rong-Sheng Xiao, Xin-Gang Wang, Hong-Liang Dai, Sheng Tang, Jian-Zhong Zheng, Ming Yang, Sai-Sai Yuan","doi":"10.1007/s12598-024-03050-8","DOIUrl":null,"url":null,"abstract":"<div><p>Here, a novel real-time monitoring sensor that integrates the oxidation of peroxymonosulfate (PMS) and the in situ monitoring of the pollutant degradation process is proposed. Briefly, FeCo@carbon fiber (FeCo@CF) was utilized as the anode electrode, while graphite rods served as the cathode electrode in assembling the galvanic cell. The FeCo@CF electrode exhibited rapid reactivity with PMS, generating reactive oxygen species that efficiently degrade organic pollutants. The degradation experiments indicate that complete bisphenol A (BPA) degradation was achieved within 10 min under optimal conditions. The real-time electrochemical signal was measured in time during the catalytic reaction, and a linear relationship between BPA concentration and the real-time charge (<i>Q</i>) was confirmed by the equation ln(<i>C</i><sub>0</sub>/<i>C</i>) = 4.393<i>Q</i> (correlation coefficients, <i>R</i><sup>2</sup> = 0.998). Furthermore, experiments conducted with aureomycin and tetracycline further validated the effectiveness of the monitoring sensor. First-principles investigation confirmed the superior adsorption energy and improved electron transfer in FeCo@CF. The integration of pollutant degradation with in situ monitoring of catalytic reactions offers promising prospects for expanding the scope of the monitoring of catalytic processes and making significant contributions to environmental purification.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 3","pages":"1800 - 1812"},"PeriodicalIF":9.6000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-024-03050-8","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Here, a novel real-time monitoring sensor that integrates the oxidation of peroxymonosulfate (PMS) and the in situ monitoring of the pollutant degradation process is proposed. Briefly, FeCo@carbon fiber (FeCo@CF) was utilized as the anode electrode, while graphite rods served as the cathode electrode in assembling the galvanic cell. The FeCo@CF electrode exhibited rapid reactivity with PMS, generating reactive oxygen species that efficiently degrade organic pollutants. The degradation experiments indicate that complete bisphenol A (BPA) degradation was achieved within 10 min under optimal conditions. The real-time electrochemical signal was measured in time during the catalytic reaction, and a linear relationship between BPA concentration and the real-time charge (Q) was confirmed by the equation ln(C0/C) = 4.393Q (correlation coefficients, R2 = 0.998). Furthermore, experiments conducted with aureomycin and tetracycline further validated the effectiveness of the monitoring sensor. First-principles investigation confirmed the superior adsorption energy and improved electron transfer in FeCo@CF. The integration of pollutant degradation with in situ monitoring of catalytic reactions offers promising prospects for expanding the scope of the monitoring of catalytic processes and making significant contributions to environmental purification.
期刊介绍:
Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.