{"title":"M-theory geometric engineering for rank-0 3d \\( \\mathcal{N} \\) = 2 theories","authors":"Andrea Sangiovanni, Roberto Valandro","doi":"10.1007/JHEP03(2025)160","DOIUrl":null,"url":null,"abstract":"<p>M-theory geometric engineering on non-compact Calabi-Yau fourfolds (CY4) produces 3d theories with 4 supercharges. Carefully establishing a dictionary between the geometry of the CY4 and the QFT in the transverse directions remains, to a large extent, an unresolved challenge, complicated by subtleties arising from M5-brane instanton corrections. Such difficulties can be circumvented in the restricted and yet controlled setting offered by CY4 with terminal singularities, as they do not admit crepant resolutions with compact exceptional divisors. After a general review of their properties and partial classifications, we focus on a subclass of terminal CY4 constructed as deformed Du Val singularities, that admit crepant resolutions with at most exceptional 2-cycles. We extract the corresponding 3d <span>\\( \\mathcal{N} \\)</span> = 2 supersymmetric theory descendant in an unambiguous fashion, as the absence of compact 4-cycles leaves no room for a choice of background <i>G</i><sub>4</sub> flux. These turn out to be theories of chiral multiplets with no gauge group and at most abelian flavor factors: we argue that they serve as the simplest building blocks to substantiate a rigorous CY4/3d QFT geometric engineering mapping.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 3","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP03(2025)160.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP03(2025)160","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
M-theory geometric engineering on non-compact Calabi-Yau fourfolds (CY4) produces 3d theories with 4 supercharges. Carefully establishing a dictionary between the geometry of the CY4 and the QFT in the transverse directions remains, to a large extent, an unresolved challenge, complicated by subtleties arising from M5-brane instanton corrections. Such difficulties can be circumvented in the restricted and yet controlled setting offered by CY4 with terminal singularities, as they do not admit crepant resolutions with compact exceptional divisors. After a general review of their properties and partial classifications, we focus on a subclass of terminal CY4 constructed as deformed Du Val singularities, that admit crepant resolutions with at most exceptional 2-cycles. We extract the corresponding 3d \( \mathcal{N} \) = 2 supersymmetric theory descendant in an unambiguous fashion, as the absence of compact 4-cycles leaves no room for a choice of background G4 flux. These turn out to be theories of chiral multiplets with no gauge group and at most abelian flavor factors: we argue that they serve as the simplest building blocks to substantiate a rigorous CY4/3d QFT geometric engineering mapping.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).