Non-invertible defects on the worldsheet

IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy
Sriram Bharadwaj, Pierluigi Niro, Konstantinos Roumpedakis
{"title":"Non-invertible defects on the worldsheet","authors":"Sriram Bharadwaj,&nbsp;Pierluigi Niro,&nbsp;Konstantinos Roumpedakis","doi":"10.1007/JHEP03(2025)164","DOIUrl":null,"url":null,"abstract":"<p>We consider codimension-one defects in the theory of <i>d</i> compact scalars on a two-dimensional worldsheet, acting linearly by mixing the scalars and their duals. By requiring that the defects are topological, we find that they correspond to a non-Abelian zero-form symmetry acting on the fields as elements of O(<i>d</i>; ℝ) × O(<i>d</i>; ℝ), and on momentum and winding charges as elements of O(<i>d, d</i>; ℝ). When the latter action is rational, we prove that it can be realized by combining gauging of non-anomalous discrete subgroups of the momentum and winding U(1) symmetries, and elements of the O(<i>d, d</i>; ℤ) duality group, such that the couplings of the theory are left invariant. Generically, these defects map local operators into non-genuine operators attached to lines, thus corresponding to a non-invertible symmetry. We confirm our results within a Lagrangian description of the non-invertible topological defects associated to the O(<i>d, d</i>; ℚ) action on charges, giving a natural explanation of the rationality conditions. Finally, we apply our findings to toroidal compactifications of bosonic string theory. In the simplest non-trivial case, we discuss the selection rules of these non-invertible symmetries, verifying explicitly that they are satisfied on a worldsheet of higher genus.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 3","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP03(2025)164.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP03(2025)164","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We consider codimension-one defects in the theory of d compact scalars on a two-dimensional worldsheet, acting linearly by mixing the scalars and their duals. By requiring that the defects are topological, we find that they correspond to a non-Abelian zero-form symmetry acting on the fields as elements of O(d; ℝ) × O(d; ℝ), and on momentum and winding charges as elements of O(d, d; ℝ). When the latter action is rational, we prove that it can be realized by combining gauging of non-anomalous discrete subgroups of the momentum and winding U(1) symmetries, and elements of the O(d, d; ℤ) duality group, such that the couplings of the theory are left invariant. Generically, these defects map local operators into non-genuine operators attached to lines, thus corresponding to a non-invertible symmetry. We confirm our results within a Lagrangian description of the non-invertible topological defects associated to the O(d, d; ℚ) action on charges, giving a natural explanation of the rationality conditions. Finally, we apply our findings to toroidal compactifications of bosonic string theory. In the simplest non-trivial case, we discuss the selection rules of these non-invertible symmetries, verifying explicitly that they are satisfied on a worldsheet of higher genus.

世界表上的不可逆缺陷
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信