Oxygen vacancies in polyimide carbon enable stable zinc-ion storage

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Luan Fang, Li Lin, Xiaotong Wang, Shuang Liu, Wenyue Shi, Zaiyuan Le, Limin Chang, Tianhao Xu, Hairui Wang, Ping Nie
{"title":"Oxygen vacancies in polyimide carbon enable stable zinc-ion storage","authors":"Luan Fang,&nbsp;Li Lin,&nbsp;Xiaotong Wang,&nbsp;Shuang Liu,&nbsp;Wenyue Shi,&nbsp;Zaiyuan Le,&nbsp;Limin Chang,&nbsp;Tianhao Xu,&nbsp;Hairui Wang,&nbsp;Ping Nie","doi":"10.1007/s12598-024-03084-y","DOIUrl":null,"url":null,"abstract":"<div><p>Aqueous zinc-ion hybrid capacitors (ZIHCs) are promising electrochemical energy storage systems with advantages of high-energy density, low cost, safety and environmental friendliness. However, application of carbon-based cathodes is limited by their low-energy density due to the lack of active sites. Herein, a chemisorption sites modulating strategy is proposed to construct nitrogen-doped polyimide carbon nanoflowers with abundant oxygen vacancies and carbonyl functionalization via high-temperature calcination and subsequent acid processing. The synergistic effect of oxygen vacancies, carbonyl groups, enhanced surface area and porous structure enables stable zinc-ion storage with high capacity. Remarkably, the carbon materials can circulate 20,000 cycles stably at a current density of 2 A·g<sup>−1</sup>. After 10,000 cycles at a high rate of 3 A·g<sup>−1</sup>, a capacity retention rate of 64% can still be achieved. The as-prepared ZIHCs provide an energy density of 65.61 Wh·kg<sup>−1</sup> at the power density of 197.82 W·kg<sup>−1</sup>. Current research shows that polyimide-derived carbon material synthesized by acid activation provides a new idea for developing cathodes in aqueous ZIHCs.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 3","pages":"1674 - 1686"},"PeriodicalIF":9.6000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-024-03084-y","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous zinc-ion hybrid capacitors (ZIHCs) are promising electrochemical energy storage systems with advantages of high-energy density, low cost, safety and environmental friendliness. However, application of carbon-based cathodes is limited by their low-energy density due to the lack of active sites. Herein, a chemisorption sites modulating strategy is proposed to construct nitrogen-doped polyimide carbon nanoflowers with abundant oxygen vacancies and carbonyl functionalization via high-temperature calcination and subsequent acid processing. The synergistic effect of oxygen vacancies, carbonyl groups, enhanced surface area and porous structure enables stable zinc-ion storage with high capacity. Remarkably, the carbon materials can circulate 20,000 cycles stably at a current density of 2 A·g−1. After 10,000 cycles at a high rate of 3 A·g−1, a capacity retention rate of 64% can still be achieved. The as-prepared ZIHCs provide an energy density of 65.61 Wh·kg−1 at the power density of 197.82 W·kg−1. Current research shows that polyimide-derived carbon material synthesized by acid activation provides a new idea for developing cathodes in aqueous ZIHCs.

Graphical abstract

聚酰亚胺碳中的氧空位可实现稳定的锌离子存储
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信