{"title":"GepA, a GGDEF-EAL protein, regulates biofilm formation and swimming motility in Vibrio parahaemolyticus","authors":"Miaomiao Zhang, Yurui Zhu, Xue Li, Xi Luo, Hui Sun, Shuhui Xiong, Renfei Lu, Yiquan Zhang","doi":"10.1007/s00203-025-04282-7","DOIUrl":null,"url":null,"abstract":"<div><p>Cyclic diguanylate monophosphate (c-di-GMP) is a second messenger that regulates multiple bacterial behaviors. It is synthesized by diguanylate cyclase (DGC) with the GGDEF domain, and degraded by phosphodiesterase (PDE) with the EAL or HD-GYP domain. The GepA (VP0117) protein in <i>Vibrio parahaemolyticus</i> contains both GGDEF and EAL domains, but its role remains unknown. This study found that deletion of the EAL domain or both the GGDEF and EAL domains in GepA increased intracellular c-di-GMP levels, enhanced biofilm formation, and inhibited polar flagellum-mediated swimming motility. Deletion of only the GGDEF domain had no such effects. Additionally, removing the EAL domain or both the GGDEF and EAL domains increased <i>cpsA</i> expression and decreased polar flagellar gene expression, while deleting the GGDEF domain alone had no impact on these genes. Overexpression of GepA or a GepA variant with a mutated GGDEF domain reduced biofilm formation but increased swimming motility. However, overexpression of GepA with a mutated EAL domain did not produce the expected phenotypic changes. In summary, GepA functions as a PDE to degrade c-di-GMP, thereby suppressing biofilm formation and enhancing swimming motility in <i>V. parahaemolyticus</i>.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"207 5","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00203-025-04282-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cyclic diguanylate monophosphate (c-di-GMP) is a second messenger that regulates multiple bacterial behaviors. It is synthesized by diguanylate cyclase (DGC) with the GGDEF domain, and degraded by phosphodiesterase (PDE) with the EAL or HD-GYP domain. The GepA (VP0117) protein in Vibrio parahaemolyticus contains both GGDEF and EAL domains, but its role remains unknown. This study found that deletion of the EAL domain or both the GGDEF and EAL domains in GepA increased intracellular c-di-GMP levels, enhanced biofilm formation, and inhibited polar flagellum-mediated swimming motility. Deletion of only the GGDEF domain had no such effects. Additionally, removing the EAL domain or both the GGDEF and EAL domains increased cpsA expression and decreased polar flagellar gene expression, while deleting the GGDEF domain alone had no impact on these genes. Overexpression of GepA or a GepA variant with a mutated GGDEF domain reduced biofilm formation but increased swimming motility. However, overexpression of GepA with a mutated EAL domain did not produce the expected phenotypic changes. In summary, GepA functions as a PDE to degrade c-di-GMP, thereby suppressing biofilm formation and enhancing swimming motility in V. parahaemolyticus.
期刊介绍:
Research papers must make a significant and original contribution to
microbiology and be of interest to a broad readership. The results of any
experimental approach that meets these objectives are welcome, particularly
biochemical, molecular genetic, physiological, and/or physical investigations into
microbial cells and their interactions with their environments, including their eukaryotic hosts.
Mini-reviews in areas of special topical interest and papers on medical microbiology, ecology and systematics, including description of novel taxa, are also published.
Theoretical papers and those that report on the analysis or ''mining'' of data are
acceptable in principle if new information, interpretations, or hypotheses
emerge.