{"title":"Disruption of Biological Processes in the Anthropocene: The Case of Phenological Mismatch","authors":"Maël Montévil","doi":"10.1007/s10441-025-09496-2","DOIUrl":null,"url":null,"abstract":"<div><p>Biologists are increasingly documenting anthropogenic disruptions, both at the organism and ecosystem levels, indicating that these disruptions are a fundamental, qualitative component of the Anthropocene. Nonetheless, the notion of disruption has yet to be theorized. Informally, disruptions are direct or indirect consequences of specific causes that impair the contribution of parts of living systems to their ability to last over time. To progress in this theorization, we work here on a particular case. Even relatively minor temperature changes can significantly impact plant-pollinator synchrony, disrupting mutualistic interaction networks. Understanding this phenomenon requires a specific rationale since models describing it use both historical and systemic reasoning. Specifically, history justifies that the ecosystem initially exists in a very narrow part of the possibility space where all its populations are viable, and the disruption leads to a more generic configuration where some populations are not viable. Building on this rationale, we develop a mathematical schema inspired by Boltzmann’s entropy, apply it to this situation, and provide a technical definition of disruption.</p></div>","PeriodicalId":7057,"journal":{"name":"Acta Biotheoretica","volume":"73 2","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biotheoretica","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10441-025-09496-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Biologists are increasingly documenting anthropogenic disruptions, both at the organism and ecosystem levels, indicating that these disruptions are a fundamental, qualitative component of the Anthropocene. Nonetheless, the notion of disruption has yet to be theorized. Informally, disruptions are direct or indirect consequences of specific causes that impair the contribution of parts of living systems to their ability to last over time. To progress in this theorization, we work here on a particular case. Even relatively minor temperature changes can significantly impact plant-pollinator synchrony, disrupting mutualistic interaction networks. Understanding this phenomenon requires a specific rationale since models describing it use both historical and systemic reasoning. Specifically, history justifies that the ecosystem initially exists in a very narrow part of the possibility space where all its populations are viable, and the disruption leads to a more generic configuration where some populations are not viable. Building on this rationale, we develop a mathematical schema inspired by Boltzmann’s entropy, apply it to this situation, and provide a technical definition of disruption.
期刊介绍:
Acta Biotheoretica is devoted to the promotion of theoretical biology, encompassing mathematical biology and the philosophy of biology, paying special attention to the methodology of formation of biological theory.
Papers on all kind of biological theories are welcome. Interesting subjects include philosophy of biology, biomathematics, computational biology, genetics, ecology and morphology. The process of theory formation can be presented in verbal or mathematical form. Moreover, purely methodological papers can be devoted to the historical origins of the philosophy underlying biological theories and concepts.
Papers should contain clear statements of biological assumptions, and where applicable, a justification of their translation into mathematical form and a detailed discussion of the mathematical treatment. The connection to empirical data should be clarified.
Acta Biotheoretica also welcomes critical book reviews, short comments on previous papers and short notes directing attention to interesting new theoretical ideas.