Cations differentiation-induced core–shell heterostructure and mutual doping for achieving high-performance transitional metal carbonates electrode

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Rui Zhang, Xin Xu, Xin-Meng Li, Wei-Jian Li, Qing-Feng Fu, Yong-Zhao Hou, Shan Gao, Lu-Chang Qin, Guang-Wu Wen, Xiao-Xiao Huang, Dong Wang
{"title":"Cations differentiation-induced core–shell heterostructure and mutual doping for achieving high-performance transitional metal carbonates electrode","authors":"Rui Zhang,&nbsp;Xin Xu,&nbsp;Xin-Meng Li,&nbsp;Wei-Jian Li,&nbsp;Qing-Feng Fu,&nbsp;Yong-Zhao Hou,&nbsp;Shan Gao,&nbsp;Lu-Chang Qin,&nbsp;Guang-Wu Wen,&nbsp;Xiao-Xiao Huang,&nbsp;Dong Wang","doi":"10.1007/s12598-024-02998-x","DOIUrl":null,"url":null,"abstract":"<div><p>Transition metal carbonates (TMCs) hold great potential as high-performance electrodes for alkali metal-ion batteries, owing to multiple-ion storage mechanisms involving conversion process and electrocatalytic reaction. However, they still suffer from inferior electronic conductivity and volume variation during delithiation/lithiation. Heterostructure and heteroatoms doping offer immense promise in enhancing reaction kinetics and structural integrity, which unfortunately have not been achieved in TMCs. Herein, a unique TMCs heterostructure with Ni-doped MnCO<sub>3</sub> as “core” and Mn-doped NiCO<sub>3</sub> as “shell”, which is wrapped by graphene (NM@MN/RGO), is achieved by cations differentiation strategy. The formation process for core–shell NM@MN consists of epitaxial growth of NiCO<sub>3</sub> from MnCO<sub>3</sub> and synchronously mutual doping, owing to the similar crystal structures but different solubility product constant/formation energy of MnCO<sub>3</sub> and NiCO<sub>3</sub>. In-situ electrochemical impedance spectroscopy, galvanostatic intermittent titration technique, differential capacity versus voltage plots, theoretical calculation and kinetic analysis reveal the superior electrochemical activity of the NM@MN/RGO to MnCO<sub>3</sub>/RGO. The NM@MN/RGO shows excellent lithium storage properties (1013.4 mAh·g<sup>−1</sup> at 0.1 A·g<sup>−1</sup> and 760 mAh·g<sup>−1</sup> after 1000 cycles at 2 A·g<sup>−1</sup>) and potassium storage properties (capacity decay rate of 0.114 mAh·g<sup>−1</sup> per cycle). This work proposes an efficient cation differentiation strategy for constructing advanced TMC electrodes.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 3","pages":"1701 - 1716"},"PeriodicalIF":9.6000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-024-02998-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Transition metal carbonates (TMCs) hold great potential as high-performance electrodes for alkali metal-ion batteries, owing to multiple-ion storage mechanisms involving conversion process and electrocatalytic reaction. However, they still suffer from inferior electronic conductivity and volume variation during delithiation/lithiation. Heterostructure and heteroatoms doping offer immense promise in enhancing reaction kinetics and structural integrity, which unfortunately have not been achieved in TMCs. Herein, a unique TMCs heterostructure with Ni-doped MnCO3 as “core” and Mn-doped NiCO3 as “shell”, which is wrapped by graphene (NM@MN/RGO), is achieved by cations differentiation strategy. The formation process for core–shell NM@MN consists of epitaxial growth of NiCO3 from MnCO3 and synchronously mutual doping, owing to the similar crystal structures but different solubility product constant/formation energy of MnCO3 and NiCO3. In-situ electrochemical impedance spectroscopy, galvanostatic intermittent titration technique, differential capacity versus voltage plots, theoretical calculation and kinetic analysis reveal the superior electrochemical activity of the NM@MN/RGO to MnCO3/RGO. The NM@MN/RGO shows excellent lithium storage properties (1013.4 mAh·g−1 at 0.1 A·g−1 and 760 mAh·g−1 after 1000 cycles at 2 A·g−1) and potassium storage properties (capacity decay rate of 0.114 mAh·g−1 per cycle). This work proposes an efficient cation differentiation strategy for constructing advanced TMC electrodes.

Graphical abstract

过渡金属碳酸盐(TMCs)具有多种离子储存机制,包括转换过程和电催化反应,因此具有作为碱金属离子电池高性能电极的巨大潜力。然而,它们仍然存在电子导电性较差以及在脱ithiation/lithiation 过程中体积变化较大等问题。异质结构和杂原子掺杂为提高反应动力学和结构完整性带来了巨大希望,但遗憾的是,TMCs 尚未实现这一点。在此,我们采用阳离子差异化策略,以掺镍的 MnCO3 为 "核",掺锰的 NiCO3 为 "壳",并用石墨烯包裹(NM@MN/RGO),实现了一种独特的 TMCs 异质结构。由于 MnCO3 和 NiCO3 晶体结构相似但溶度积常数/形成能不同,核壳 NM@MN 的形成过程包括从 MnCO3 外延生长 NiCO3 和同步相互掺杂。原位电化学阻抗谱、电静电间歇滴定技术、差分容量与电压图、理论计算和动力学分析表明,NM@MN/RGO 的电化学活性优于 MnCO3/RGO。NM@MN/RGO 具有优异的锂储存性能(0.1 A-g-1 时为 1013.4 mAh-g-1,2 A-g-1 时循环 1000 次后为 760 mAh-g-1)和钾储存性能(每循环容量衰减率为 0.114 mAh-g-1)。这项工作为构建先进的 TMC 电极提出了一种高效的阳离子分化策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信