Direct exposure with exogenous mitochondria reduce colistin-induced mitochondrial dysfunction and cellular damages in isolated rat renal proximal tubular cells
Abdollah Arjmand, Ahmad Salimi, Maryam Mohammadabadi, Mehrdad Faizi, Amir Fakhri, Zhaleh Jamali, Jalal Pourahmad
{"title":"Direct exposure with exogenous mitochondria reduce colistin-induced mitochondrial dysfunction and cellular damages in isolated rat renal proximal tubular cells","authors":"Abdollah Arjmand, Ahmad Salimi, Maryam Mohammadabadi, Mehrdad Faizi, Amir Fakhri, Zhaleh Jamali, Jalal Pourahmad","doi":"10.1007/s10735-025-10389-4","DOIUrl":null,"url":null,"abstract":"<div><p>Kidney damage caused by colistin (polymyxin E) can bring about a decrease in creatinine clearance, potential proteinuria, cylindruria and oliguria in treated patients. It is therefore imperative to develop a new therapeutic strategy for reducing kidney damage after treatment with colistin. Mitochondrial damage is one of contributing factors in colistin-induced nephrotoxicity. Given the therapeutic benefits of mitochondrial transplantation by exogenous healthy mitochondria, we hypothesized that this strategy would be capable of ameliorating renal proximal tubular cells damage following exposure with colistin. For this purpose, we isolated rat renal proximal tubular cells (RPTCs) form kidney and exposed them with toxic concertation of colistin with/without rat healthy isolated mitochondria for 4 h. Cellular parameters such as lactate dehydrogenase (LDH), reactive oxygen species (ROS) formation, mitochondrial membrane potential (MMP), caspase 3 activation, lysosomal damage, glutathione and ATP content were measured. The results showed that administration of isolated mitochondria could improve colistin-induced nephrotoxicity and reduce mitochondrial dysfunction. Exogenous mitochondria reduced the activity of LDH, production of ROS, ATP and GSH depletion, loss of MMP, lysosomal damages and cell death. To the best of our knowledge, these results provide the first direct experimental evidence that direct exposure with exogenous mitochondria is capable of ameliorating cellular damage following treatment with colistin. These findings support that mitochondrial transplantation may be a promising therapeutic strategy for colistin-associated mitochondrial dysfunction in kidney cells.</p></div>","PeriodicalId":650,"journal":{"name":"Journal of Molecular Histology","volume":"56 2","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Histology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10735-025-10389-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Kidney damage caused by colistin (polymyxin E) can bring about a decrease in creatinine clearance, potential proteinuria, cylindruria and oliguria in treated patients. It is therefore imperative to develop a new therapeutic strategy for reducing kidney damage after treatment with colistin. Mitochondrial damage is one of contributing factors in colistin-induced nephrotoxicity. Given the therapeutic benefits of mitochondrial transplantation by exogenous healthy mitochondria, we hypothesized that this strategy would be capable of ameliorating renal proximal tubular cells damage following exposure with colistin. For this purpose, we isolated rat renal proximal tubular cells (RPTCs) form kidney and exposed them with toxic concertation of colistin with/without rat healthy isolated mitochondria for 4 h. Cellular parameters such as lactate dehydrogenase (LDH), reactive oxygen species (ROS) formation, mitochondrial membrane potential (MMP), caspase 3 activation, lysosomal damage, glutathione and ATP content were measured. The results showed that administration of isolated mitochondria could improve colistin-induced nephrotoxicity and reduce mitochondrial dysfunction. Exogenous mitochondria reduced the activity of LDH, production of ROS, ATP and GSH depletion, loss of MMP, lysosomal damages and cell death. To the best of our knowledge, these results provide the first direct experimental evidence that direct exposure with exogenous mitochondria is capable of ameliorating cellular damage following treatment with colistin. These findings support that mitochondrial transplantation may be a promising therapeutic strategy for colistin-associated mitochondrial dysfunction in kidney cells.
期刊介绍:
The Journal of Molecular Histology publishes results of original research on the localization and expression of molecules in animal cells, tissues and organs. Coverage includes studies describing novel cellular or ultrastructural distributions of molecules which provide insight into biochemical or physiological function, development, histologic structure and disease processes.
Major research themes of particular interest include:
- Cell-Cell and Cell-Matrix Interactions;
- Connective Tissues;
- Development and Disease;
- Neuroscience.
Please note that the Journal of Molecular Histology does not consider manuscripts dealing with the application of immunological or other probes on non-standard laboratory animal models unless the results are clearly of significant and general biological importance.
The Journal of Molecular Histology publishes full-length original research papers, review articles, short communications and letters to the editors. All manuscripts are typically reviewed by two independent referees. The Journal of Molecular Histology is a continuation of The Histochemical Journal.