Compressive performance of laminated bamboo columns with glass fiber reinforced polymer

IF 2.4 3区 农林科学 Q1 FORESTRY
Zhen Wang, Haitao Li, Rodolfo Lorenzo, Chaokun Hong
{"title":"Compressive performance of laminated bamboo columns with glass fiber reinforced polymer","authors":"Zhen Wang,&nbsp;Haitao Li,&nbsp;Rodolfo Lorenzo,&nbsp;Chaokun Hong","doi":"10.1007/s00107-025-02237-9","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents an investigation to check the feasibility of reinforcing laminated bamboo columns through the application of glass fiber reinforced polymer (GFRP) composites, with particular emphasis on examining the influence of slenderness ratio on the performance of GFRP reinforced columns. A comprehensive experimental program was conducted involving eighteen full-scale columns, which were categorized into six distinct slenderness groups. External GFRP wrapping was employed to enhance compression strength, as well as to restrain the outward local buckling deformation of the laminated bamboo column. Experimental observations revealed both compression and buckling failure modes. The results demonstrated that the implementation of GFRP reinforcement with a minimal volume fraction significantly enhanced both the load-carrying capacity and deformation ability of the laminated bamboo columns. A consistent inverse relationship was observed between the slenderness ratio and the ultimate load-carrying capacity of the specimens. To further validate and extend the experimental findings, a methodology for modeling the column specimens was developed using ABAQUS software, incorporating nonlinear analysis to simulate the behavior. The numerical simulations exhibited strong correlation with experimental results, thereby confirming the reliability and effectiveness of the proposed methods for potential similar engineering applications.</p></div>","PeriodicalId":550,"journal":{"name":"European Journal of Wood and Wood Products","volume":"83 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Wood and Wood Products","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00107-025-02237-9","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an investigation to check the feasibility of reinforcing laminated bamboo columns through the application of glass fiber reinforced polymer (GFRP) composites, with particular emphasis on examining the influence of slenderness ratio on the performance of GFRP reinforced columns. A comprehensive experimental program was conducted involving eighteen full-scale columns, which were categorized into six distinct slenderness groups. External GFRP wrapping was employed to enhance compression strength, as well as to restrain the outward local buckling deformation of the laminated bamboo column. Experimental observations revealed both compression and buckling failure modes. The results demonstrated that the implementation of GFRP reinforcement with a minimal volume fraction significantly enhanced both the load-carrying capacity and deformation ability of the laminated bamboo columns. A consistent inverse relationship was observed between the slenderness ratio and the ultimate load-carrying capacity of the specimens. To further validate and extend the experimental findings, a methodology for modeling the column specimens was developed using ABAQUS software, incorporating nonlinear analysis to simulate the behavior. The numerical simulations exhibited strong correlation with experimental results, thereby confirming the reliability and effectiveness of the proposed methods for potential similar engineering applications.

Abstract Image

玻璃纤维增强聚合物叠合竹柱的抗压性能
本文研究了玻璃纤维增强聚合物(GFRP)复合材料加固竹层合柱的可行性,重点研究了长细比对GFRP增强柱性能的影响。一个全面的实验方案进行了涉及18个全尺寸柱,这被分为六个不同的细长细弱组。采用玻璃钢外包层提高竹柱抗压强度,抑制竹柱向外局部屈曲变形。实验观察显示了压缩和屈曲两种破坏模式。结果表明:采用最小体积分数的GFRP加固可显著提高叠合竹柱的承载能力和变形能力;试件的长细比与极限承载能力呈一致的反比关系。为了进一步验证和扩展实验结果,利用ABAQUS软件开发了一种柱样建模方法,结合非线性分析来模拟柱样的行为。数值模拟结果与实验结果具有较强的相关性,从而验证了所提方法在类似工程应用中的可靠性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Wood and Wood Products
European Journal of Wood and Wood Products 工程技术-材料科学:纸与木材
CiteScore
5.40
自引率
3.80%
发文量
124
审稿时长
6.0 months
期刊介绍: European Journal of Wood and Wood Products reports on original research and new developments in the field of wood and wood products and their biological, chemical, physical as well as mechanical and technological properties, processes and uses. Subjects range from roundwood to wood based products, composite materials and structural applications, with related jointing techniques. Moreover, it deals with wood as a chemical raw material, source of energy as well as with inter-disciplinary aspects of environmental assessment and international markets. European Journal of Wood and Wood Products aims at promoting international scientific communication and transfer of new technologies from research into practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信