Signal Enhancement and Reproducibility Improvement in Double-Pulse Femtosecond-Laser-Induced Breakdown Spectroscopy

IF 0.8 4区 化学 Q4 SPECTROSCOPY
Y. Zhu, P. Zhou, S. Li
{"title":"Signal Enhancement and Reproducibility Improvement in Double-Pulse Femtosecond-Laser-Induced Breakdown Spectroscopy","authors":"Y. Zhu,&nbsp;P. Zhou,&nbsp;S. Li","doi":"10.1007/s10812-025-01887-0","DOIUrl":null,"url":null,"abstract":"<p>A focus depth optimization method was proposed for signal enhancement and reproducibility improvement in pump-probe collinear double-pulse femtosecond laser-induced breakdown spectroscopy. This method was based on the optimization of the focus depth of the second pulse. The spectral signal intensity showed a stable enhancement with an enhancement factor of ~3, and the signal reproducibility exhibited minimal fluctuations when the focus depth of the second pulse was within the range of 0–2 mm below the sample surface. Additionally, the possible mechanisms behind the observed signal enhancement and improvement in reproducibility were discussed based on the measured plasma temperature and electron density.</p>","PeriodicalId":609,"journal":{"name":"Journal of Applied Spectroscopy","volume":"92 1","pages":"116 - 122"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10812-025-01887-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

A focus depth optimization method was proposed for signal enhancement and reproducibility improvement in pump-probe collinear double-pulse femtosecond laser-induced breakdown spectroscopy. This method was based on the optimization of the focus depth of the second pulse. The spectral signal intensity showed a stable enhancement with an enhancement factor of ~3, and the signal reproducibility exhibited minimal fluctuations when the focus depth of the second pulse was within the range of 0–2 mm below the sample surface. Additionally, the possible mechanisms behind the observed signal enhancement and improvement in reproducibility were discussed based on the measured plasma temperature and electron density.

针对泵浦-探针共线双脉冲飞秒激光诱导击穿光谱的信号增强和重现性改善,提出了一种聚焦深度优化方法。该方法以优化第二个脉冲的聚焦深度为基础。当第二个脉冲的聚焦深度在样品表面以下 0-2 毫米范围内时,光谱信号强度显示出稳定的增强,增强因子约为 3,信号重现性显示出最小的波动。此外,还根据测量到的等离子体温度和电子密度讨论了观察到的信号增强和重现性改善背后的可能机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
145
审稿时长
2.5 months
期刊介绍: Journal of Applied Spectroscopy reports on many key applications of spectroscopy in chemistry, physics, metallurgy, and biology. An increasing number of papers focus on the theory of lasers, as well as the tremendous potential for the practical applications of lasers in numerous fields and industries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信