UiO-66 Metal-organic Framework (MOF) as an Osteogenic Stimulant in the Poly-3-hydroxybutyrate-zein/UiO-66 Electrospun Composite Scaffold for Bone Tissue Engineering Applications

IF 4.7 3区 工程技术 Q2 ENGINEERING, ENVIRONMENTAL
Saeid Ghasemi, Mahdie Esmaeili, Mohammad Dinari, Arezou Dabiri, Saeed Karbasi
{"title":"UiO-66 Metal-organic Framework (MOF) as an Osteogenic Stimulant in the Poly-3-hydroxybutyrate-zein/UiO-66 Electrospun Composite Scaffold for Bone Tissue Engineering Applications","authors":"Saeid Ghasemi,&nbsp;Mahdie Esmaeili,&nbsp;Mohammad Dinari,&nbsp;Arezou Dabiri,&nbsp;Saeed Karbasi","doi":"10.1007/s10924-025-03521-8","DOIUrl":null,"url":null,"abstract":"<div><p>Metal-organic frameworks have recently become popular in biomedical applications due to their high surface areas, porosity, suitable mechanical properties, controlled degradability, and selective compositions. Among them, UiO-66 is particularly noteworthy for its exceptional stability, biodegradability, low toxicity, and osteogenic properties. Herein, UiO-66 was synthesized via a solvothermal method and characterized employing FTIR, XRD, FESEM, and TEM analyses. Subsequently, poly-3-hydroxybutyrate-zein/UiO-66 electrospun composite scaffolds were fabricated. Regarding the SEM, mechanical analyses, and water contact angle results, the scaffold containing 2 wt% UiO-66 exhibited the optimum characteristic. EDS and TEM examinations confirmed UiO-66’s presence and distribution, TGA validated its claimed amount in the scaffold, and FTIR revealed the possible interactions between ingredients. Incorporating 2 wt% UiO-66 reduced the fiber diameter and water contact angle by about 54 nm and 20°, respectively, while increasing surface roughness and crystallinity. UiO-66 significantly enhanced ultimate tensile stress and Young’s modulus by approximately 90% and 101%, respectively. It also boosted the biomineralization of the scaffold and hastened the degradation rate. Eventually, adding UiO-66 led to noticeable increases in viability, proliferation, attachment, ALP activity, and ECM mineralization, as well as upregulation of COLΙ, RUNX2, and OCN genes of MG-63 cells seeded on the scaffolds. In conclusion, incorporating UiO-66 not only reinforced the composite scaffold but also stimulated osteogenesis, making it an advantageous candidate for bone tissue engineering applications.</p></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"33 4","pages":"2001 - 2028"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-025-03521-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Metal-organic frameworks have recently become popular in biomedical applications due to their high surface areas, porosity, suitable mechanical properties, controlled degradability, and selective compositions. Among them, UiO-66 is particularly noteworthy for its exceptional stability, biodegradability, low toxicity, and osteogenic properties. Herein, UiO-66 was synthesized via a solvothermal method and characterized employing FTIR, XRD, FESEM, and TEM analyses. Subsequently, poly-3-hydroxybutyrate-zein/UiO-66 electrospun composite scaffolds were fabricated. Regarding the SEM, mechanical analyses, and water contact angle results, the scaffold containing 2 wt% UiO-66 exhibited the optimum characteristic. EDS and TEM examinations confirmed UiO-66’s presence and distribution, TGA validated its claimed amount in the scaffold, and FTIR revealed the possible interactions between ingredients. Incorporating 2 wt% UiO-66 reduced the fiber diameter and water contact angle by about 54 nm and 20°, respectively, while increasing surface roughness and crystallinity. UiO-66 significantly enhanced ultimate tensile stress and Young’s modulus by approximately 90% and 101%, respectively. It also boosted the biomineralization of the scaffold and hastened the degradation rate. Eventually, adding UiO-66 led to noticeable increases in viability, proliferation, attachment, ALP activity, and ECM mineralization, as well as upregulation of COLΙ, RUNX2, and OCN genes of MG-63 cells seeded on the scaffolds. In conclusion, incorporating UiO-66 not only reinforced the composite scaffold but also stimulated osteogenesis, making it an advantageous candidate for bone tissue engineering applications.

UiO-66金属有机骨架(MOF)在聚3-羟基丁酸玉米蛋白/UiO-66静电纺骨组织工程复合支架中的促成骨作用
金属有机骨架由于其高表面积、多孔性、合适的机械性能、可控降解性和选择性组成,近年来在生物医学应用中越来越受欢迎。其中,UiO-66以其优异的稳定性、可生物降解性、低毒性和成骨性而特别值得注意。本文采用溶剂热法合成了UiO-66,并用FTIR、XRD、FESEM和TEM对其进行了表征。随后,制备了聚3-羟基丁酸玉米蛋白/UiO-66静电纺丝复合支架。SEM、力学分析和水接触角结果表明,含2% UiO-66的支架表现出最佳的性能。EDS和TEM检测证实了UiO-66的存在和分布,TGA验证了其在支架中的含量,FTIR显示了成分之间可能的相互作用。加入2 wt%的UiO-66后,纤维直径和水接触角分别减小约54 nm和20°,同时表面粗糙度和结晶度增加。UiO-66显著提高了极限拉应力和杨氏模量,分别提高了约90%和101%。它还促进了支架的生物矿化,加快了降解速度。最终,添加UiO-66可显著提高MG-63细胞在支架上的活力、增殖、附着、ALP活性和ECM矿化,并上调COLΙ、RUNX2和OCN基因。综上所述,UiO-66的加入不仅增强了复合支架,而且促进了骨生成,使其成为骨组织工程应用的有利候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Polymers and the Environment
Journal of Polymers and the Environment 工程技术-高分子科学
CiteScore
9.50
自引率
7.50%
发文量
297
审稿时长
9 months
期刊介绍: The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信