Upcycling Leather and Paper Wastes to Biodegradable Materials for Packaging Displaying Excellent Multifunctional Barrier Properties

IF 4.7 3区 工程技术 Q2 ENGINEERING, ENVIRONMENTAL
Nazia Afrin Jashi, Mritika Debnath, Lucian Lucia, Lokendra Pal, Mohammed Mizanur Rahman, Khandoker Samaher Salem
{"title":"Upcycling Leather and Paper Wastes to Biodegradable Materials for Packaging Displaying Excellent Multifunctional Barrier Properties","authors":"Nazia Afrin Jashi,&nbsp;Mritika Debnath,&nbsp;Lucian Lucia,&nbsp;Lokendra Pal,&nbsp;Mohammed Mizanur Rahman,&nbsp;Khandoker Samaher Salem","doi":"10.1007/s10924-025-03526-3","DOIUrl":null,"url":null,"abstract":"<div><p>A robust biodegradable packaging material was developed having superior barrier resistance to water, air, oil, grease, and microorganisms, which consisted of paper handsheets made from recycled old-corrugated container (OCC) wastes and collagen hydrolysate by upcycling leather wastes to reduce dependence on conventional packaging materials. The dechroming process of leather waste using 10% NaOH exhibited remarkable efficiency, achieving a 99.98% reduction in chromium content (&lt; 44 ppb) within the World Health Organization’s recommended range. A coating recipe was formulated using collagen hydrolysate, chitosan, and glycerin (20%C-Ch-Gly) and applied on the OCC handsheets, demonstrating excellent barrier properties against hot oil, grease, and organic solvents (Kit rate 12). The developed packaging materials’ water vapor and air permeability decreased significantly by 150- and 10-fold, while tensile and burst strength increased by 140.84% and 77.73% compared to uncoated handsheets. The contact angle for water and organic solvents increased by 49.14% and 47.2%, ensuring excellent solvent repellency while maintaining a smooth and even morphological structure due to reduced average roughness by 76.67%. The optimized packaging material exhibited no cytotoxicity, displayed excellent antimicrobial properties, and was completely biodegraded in 11 weeks. This study demonstrated the potential of bio-based packaging as a viable alternative to hazardous, non-biodegradable plastics commonly used globally through upcycling leather and paper waste.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"33 4","pages":"1814 - 1828"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-025-03526-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

A robust biodegradable packaging material was developed having superior barrier resistance to water, air, oil, grease, and microorganisms, which consisted of paper handsheets made from recycled old-corrugated container (OCC) wastes and collagen hydrolysate by upcycling leather wastes to reduce dependence on conventional packaging materials. The dechroming process of leather waste using 10% NaOH exhibited remarkable efficiency, achieving a 99.98% reduction in chromium content (< 44 ppb) within the World Health Organization’s recommended range. A coating recipe was formulated using collagen hydrolysate, chitosan, and glycerin (20%C-Ch-Gly) and applied on the OCC handsheets, demonstrating excellent barrier properties against hot oil, grease, and organic solvents (Kit rate 12). The developed packaging materials’ water vapor and air permeability decreased significantly by 150- and 10-fold, while tensile and burst strength increased by 140.84% and 77.73% compared to uncoated handsheets. The contact angle for water and organic solvents increased by 49.14% and 47.2%, ensuring excellent solvent repellency while maintaining a smooth and even morphological structure due to reduced average roughness by 76.67%. The optimized packaging material exhibited no cytotoxicity, displayed excellent antimicrobial properties, and was completely biodegraded in 11 weeks. This study demonstrated the potential of bio-based packaging as a viable alternative to hazardous, non-biodegradable plastics commonly used globally through upcycling leather and paper waste.

Graphical Abstract

Abstract Image

将皮革和纸张废弃物升级为具有优异多功能阻隔性能的可生物降解包装材料
开发了一种坚固的可生物降解包装材料,具有优异的水、空气、油、油脂和微生物的阻隔性,该材料由回收的旧瓦楞纸箱(OCC)废物和胶原蛋白水解物组成,通过对皮革废物的升级回收来减少对传统包装材料的依赖。使用10% NaOH对皮革废料进行脱铬处理,效果显著,铬含量降低99.98% (44 ppb),达到世界卫生组织推荐的范围。用胶原蛋白水解物、壳聚糖和甘油(20%C-Ch-Gly)配制了一种涂层配方,并将其涂在OCC手板上,显示出对热油、油脂和有机溶剂(Kit rate 12)的优异阻隔性能。与未涂布的手纸相比,该包装材料的透气性和透气性分别降低了150倍和10倍,抗拉强度和爆裂强度分别提高了140.84%和77.73%。水和有机溶剂的接触角分别增加了49.14%和47.2%,由于平均粗糙度降低了76.67%,在保持优异的溶剂拒水性的同时保持了光滑均匀的形态结构。优化后的包装材料没有细胞毒性,具有良好的抗菌性能,并在11周内完全被生物降解。这项研究表明,生物基包装作为一种可行的替代品,可以替代全球普遍使用的有害的、不可生物降解的塑料,通过对皮革和纸张废物进行升级回收。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Polymers and the Environment
Journal of Polymers and the Environment 工程技术-高分子科学
CiteScore
9.50
自引率
7.50%
发文量
297
审稿时长
9 months
期刊介绍: The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信