Ordered mesoporous carbon-supported iron vanadate anode for fast-charging, high energy density, and stable lithium-ion batteries

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yi-Fan Li, Jing-Hui Ren, Qiu-Qi Wu, Qian Wang, Wen-Jun Cao, Xu-Da Guo, Shu-Guo Lei, Yi Zhang, Shan Jiang, Lei-Chao Meng, Ji-Wei Hou
{"title":"Ordered mesoporous carbon-supported iron vanadate anode for fast-charging, high energy density, and stable lithium-ion batteries","authors":"Yi-Fan Li,&nbsp;Jing-Hui Ren,&nbsp;Qiu-Qi Wu,&nbsp;Qian Wang,&nbsp;Wen-Jun Cao,&nbsp;Xu-Da Guo,&nbsp;Shu-Guo Lei,&nbsp;Yi Zhang,&nbsp;Shan Jiang,&nbsp;Lei-Chao Meng,&nbsp;Ji-Wei Hou","doi":"10.1007/s12598-024-03044-6","DOIUrl":null,"url":null,"abstract":"<div><p>Developing fast-charging lithium-ion batteries (LIBs) that feature high energy density is critical for the scalable application of electric vehicles. Iron vanadate (FVO) holds great potential as anode material in fast-charging LIBs because of its high theoretical specific capacity and the high natural abundance of its constituents. However, the capacity of FVO rapidly decays due to its low electrical conductivity. Herein, uniform FVO nanoparticles are grown in situ on ordered mesoporous carbon (CMK-3) support, forming a highly electrically conductive porous network, FVO/CMK-3. The structure of CMK-3 helps prevent agglomeration of FVO particles. The electrically conductive nature of CMK-3 can further enhance the electrical conductivity of FVO/CMK-3 and buffer the volume expansion of FVO particles during cycling processes. As a result, the FVO/CMK-3 displays excellent fast-charging performance of 364.6 mAh·g<sup>−1</sup> capacity for 2500 cycles at 10 A·g<sup>−1</sup> (with an ultralow average capacity loss per cycle of 0.003%) through a pseudocapacitive-dominant process. Moreover, the LiCoO<sub>2</sub>//FVO/CMK-3 full cell achieves a high capacity of 100.2 mAh·g<sup>−1</sup> and a high capacity retention (96.2%) after 200 cycles. The superior electrochemical performance demonstrates that FVO/CMK-3 is an ideal anode material candidate for fast-charging, stable LIBs with high energy density.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 3","pages":"1605 - 1616"},"PeriodicalIF":9.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-024-03044-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing fast-charging lithium-ion batteries (LIBs) that feature high energy density is critical for the scalable application of electric vehicles. Iron vanadate (FVO) holds great potential as anode material in fast-charging LIBs because of its high theoretical specific capacity and the high natural abundance of its constituents. However, the capacity of FVO rapidly decays due to its low electrical conductivity. Herein, uniform FVO nanoparticles are grown in situ on ordered mesoporous carbon (CMK-3) support, forming a highly electrically conductive porous network, FVO/CMK-3. The structure of CMK-3 helps prevent agglomeration of FVO particles. The electrically conductive nature of CMK-3 can further enhance the electrical conductivity of FVO/CMK-3 and buffer the volume expansion of FVO particles during cycling processes. As a result, the FVO/CMK-3 displays excellent fast-charging performance of 364.6 mAh·g−1 capacity for 2500 cycles at 10 A·g−1 (with an ultralow average capacity loss per cycle of 0.003%) through a pseudocapacitive-dominant process. Moreover, the LiCoO2//FVO/CMK-3 full cell achieves a high capacity of 100.2 mAh·g−1 and a high capacity retention (96.2%) after 200 cycles. The superior electrochemical performance demonstrates that FVO/CMK-3 is an ideal anode material candidate for fast-charging, stable LIBs with high energy density.

Graphical abstract

开发具有高能量密度的快速充电锂离子电池(LIB)对于电动汽车的规模化应用至关重要。钒酸铁(FVO)具有很高的理论比容量,其成分的天然丰度也很高,因此作为快速充电锂离子电池的负极材料具有很大的潜力。然而,由于导电率低,FVO 的容量会迅速衰减。在这里,均匀的 FVO 纳米颗粒被原位生长在有序介孔碳(CMK-3)支架上,形成了高导电性多孔网络 FVO/CMK-3。CMK-3 的结构有助于防止 FVO 颗粒聚集。CMK-3 的导电性能可进一步增强 FVO/CMK-3 的导电性,并在循环过程中缓冲 FVO 颗粒的体积膨胀。因此,通过伪电容主导过程,FVO/CMK-3 显示出优异的快速充电性能,在 10 A-g-1 条件下循环 2500 次,容量可达 364.6 mAh-g-1(每次循环的平均容量损耗为 0.003%)。此外,钴酸锂/FVO/CMK-3 全电池在 200 次循环后实现了 100.2 mAh-g-1 的高容量和高容量保持率(96.2%)。优异的电化学性能表明,FVO/CMK-3 是一种理想的阳极材料,可用于快速充电、稳定的高能量密度 LIB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信