Juan Ortiz-Sanz, Guillermo Bastos, Mariluz Gil-Docampo
{"title":"Deformation measurement of twisted timber beam using UAV SfM photogrammetry and a new feature extraction algorithm","authors":"Juan Ortiz-Sanz, Guillermo Bastos, Mariluz Gil-Docampo","doi":"10.1007/s00107-025-02245-9","DOIUrl":null,"url":null,"abstract":"<div><p>Drones facilitate the monitoring of large structures through feature extraction from point clouds generated through Structure-from-Motion photogrammetry. In the present study, we determined the deformation of a structural timber strip subjected to simultaneous bending and torsion. Three cameras were used. Two of them are pre-installed on the UAVs utilized, and the third is a consumer-grade Canon camera. All three were configured in flight mode. The geometry of the timber strip was generated through photogrammetry from the photos taken with each camera at a height of 1.5 m. The results were compared with the reference geometry, which was also created using the Canon camera on the ground at an average distance of 0.92 m. This reference geometry was previously validated in a preparatory project using extensometers with 1-µm precision. A Python-based algorithm was developed to automatically extract the position of the centroid and the rotation of each cross-sectional segment of the strip from UAV-based photogrammetric point clouds. Deformations measured by each of the three devices and the new algorithm are compared with actual deformation. The accuracy in measuring displacement and rotation of the centroid of strip cross-sections ranged between − 0.05 and 0.09 mm and between 0.00° and 0.24°, respectively.</p></div>","PeriodicalId":550,"journal":{"name":"European Journal of Wood and Wood Products","volume":"83 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00107-025-02245-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Wood and Wood Products","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00107-025-02245-9","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Drones facilitate the monitoring of large structures through feature extraction from point clouds generated through Structure-from-Motion photogrammetry. In the present study, we determined the deformation of a structural timber strip subjected to simultaneous bending and torsion. Three cameras were used. Two of them are pre-installed on the UAVs utilized, and the third is a consumer-grade Canon camera. All three were configured in flight mode. The geometry of the timber strip was generated through photogrammetry from the photos taken with each camera at a height of 1.5 m. The results were compared with the reference geometry, which was also created using the Canon camera on the ground at an average distance of 0.92 m. This reference geometry was previously validated in a preparatory project using extensometers with 1-µm precision. A Python-based algorithm was developed to automatically extract the position of the centroid and the rotation of each cross-sectional segment of the strip from UAV-based photogrammetric point clouds. Deformations measured by each of the three devices and the new algorithm are compared with actual deformation. The accuracy in measuring displacement and rotation of the centroid of strip cross-sections ranged between − 0.05 and 0.09 mm and between 0.00° and 0.24°, respectively.
期刊介绍:
European Journal of Wood and Wood Products reports on original research and new developments in the field of wood and wood products and their biological, chemical, physical as well as mechanical and technological properties, processes and uses. Subjects range from roundwood to wood based products, composite materials and structural applications, with related jointing techniques. Moreover, it deals with wood as a chemical raw material, source of energy as well as with inter-disciplinary aspects of environmental assessment and international markets.
European Journal of Wood and Wood Products aims at promoting international scientific communication and transfer of new technologies from research into practice.