In situ polymerization of fluorinated electrolytes for high-voltage and long-cycling solid-state lithium metal batteries

Yunpei Lu, Xinyi Zhang, Yong Wu, Hao Cheng and Yingying Lu
{"title":"In situ polymerization of fluorinated electrolytes for high-voltage and long-cycling solid-state lithium metal batteries","authors":"Yunpei Lu, Xinyi Zhang, Yong Wu, Hao Cheng and Yingying Lu","doi":"10.1039/D4IM00082J","DOIUrl":null,"url":null,"abstract":"<p>Currently, the practical application of liquid lithium-ion batteries faces challenges in meeting the requirements of high energy density and safety. To address concerns such as electrolyte leakage and flammability, solid polymer electrolytes (SPEs) have emerged as promising alternatives to liquid electrolytes. SPEs, particularly those synthesized <em>via in situ</em> polymerization processes, offer advantages in establishing robust interface contacts and compatibility with existing industrial production lines. However, the electrochemical stability of SPEs remains a hurdle for high-voltage lithium metal batteries (LMBs). To enhance interface uniformity, electrochemical stability, and thermal stability, researchers commonly employ fluorination strategies, thus expanding the potential of SPEs in high-voltage, long-cycling LMBs. Fluorine plays a crucial role in achieving these objectives due to its high electronegativity, polarization, outstanding dielectric properties, strong bond strength, stability, and hydrophobic nature. In this study, we delve into how fluorinated electrolytes improve interface stability between SPEs and electrodes by examining their underlying mechanisms. Besides, we provide an overview of current fluorination strategies and their impact on battery performance. Furthermore, we discuss challenges and issues associated with current <em>in situ</em> polymerized fluorinated SPE routes and propose practical strategies for consideration.</p><p>Keywords: Lithium metal batteries; <em>In situ</em> polymerization; Fluorinated polymer electrolytes; High-voltage; Long cycling; Stable interface.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 2","pages":" 151-177"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/im/d4im00082j?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Chemistry & Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/im/d4im00082j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, the practical application of liquid lithium-ion batteries faces challenges in meeting the requirements of high energy density and safety. To address concerns such as electrolyte leakage and flammability, solid polymer electrolytes (SPEs) have emerged as promising alternatives to liquid electrolytes. SPEs, particularly those synthesized via in situ polymerization processes, offer advantages in establishing robust interface contacts and compatibility with existing industrial production lines. However, the electrochemical stability of SPEs remains a hurdle for high-voltage lithium metal batteries (LMBs). To enhance interface uniformity, electrochemical stability, and thermal stability, researchers commonly employ fluorination strategies, thus expanding the potential of SPEs in high-voltage, long-cycling LMBs. Fluorine plays a crucial role in achieving these objectives due to its high electronegativity, polarization, outstanding dielectric properties, strong bond strength, stability, and hydrophobic nature. In this study, we delve into how fluorinated electrolytes improve interface stability between SPEs and electrodes by examining their underlying mechanisms. Besides, we provide an overview of current fluorination strategies and their impact on battery performance. Furthermore, we discuss challenges and issues associated with current in situ polymerized fluorinated SPE routes and propose practical strategies for consideration.

Keywords: Lithium metal batteries; In situ polymerization; Fluorinated polymer electrolytes; High-voltage; Long cycling; Stable interface.

Abstract Image

高压长循环固态锂金属电池用氟化电解质的原位聚合
目前,液体锂离子电池的实际应用面临着满足高能量密度和安全性要求的挑战。为了解决诸如电解质泄漏和易燃性等问题,固体聚合物电解质(spe)已成为液体电解质的有希望的替代品。spe,特别是通过原位聚合工艺合成的spe,在建立坚固的界面接触和与现有工业生产线的兼容性方面具有优势。然而,spe的电化学稳定性仍然是高压锂金属电池(lmb)的一个障碍。为了增强界面均匀性、电化学稳定性和热稳定性,研究人员通常采用氟化策略,从而扩大了spe在高压、长循环lmb中的潜力。氟在实现这些目标方面发挥着至关重要的作用,因为它具有高电负性、极化性、杰出的介电性能、强键强度、稳定性和疏水性。在本研究中,我们通过研究氟化电解质的潜在机制,深入研究了氟化电解质如何改善spe和电极之间的界面稳定性。此外,我们还概述了当前的氟化策略及其对电池性能的影响。此外,我们讨论了与当前原位聚合氟固相萃取路线相关的挑战和问题,并提出了可供考虑的实用策略。关键词:锂金属电池;原位聚合;含氟聚合物电解质;高压;长循环;稳定的接口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Industrial Chemistry & Materials
Industrial Chemistry & Materials chemistry, chemical engineering, functional materials, energy, etc.-
自引率
0.00%
发文量
0
期刊介绍: Industrial Chemistry & Materials (ICM) publishes significant innovative research and major technological breakthroughs in all aspects of industrial chemistry and materials, with a particular focus on the important innovation of low-carbon chemical industry, energy and functional materials. By bringing researchers, engineers, and policymakers into one place, research is inspired, challenges are solved and the applications of science and technology are accelerated. The global editorial and advisory board members are valued experts in the community. With their support, the rigorous editorial practices and dissemination ensures your research is accessible and discoverable on a global scale. Industrial Chemistry & Materials publishes: ● Communications ● Full papers ● Minireviews ● Reviews ● Perspectives ● Comments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信