Synthesis of nanoscale surfactant-encapsulated silica-supported polyoxometalate [Si/AlO2]@[PWZn]@CTAB and its catalytic application in the oxidation of alcohols†

IF 3.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2025-03-21 DOI:10.1039/D5RA00821B
Mohammad Alizadeh and Bahram Yadollahi
{"title":"Synthesis of nanoscale surfactant-encapsulated silica-supported polyoxometalate [Si/AlO2]@[PWZn]@CTAB and its catalytic application in the oxidation of alcohols†","authors":"Mohammad Alizadeh and Bahram Yadollahi","doi":"10.1039/D5RA00821B","DOIUrl":null,"url":null,"abstract":"<p >Silica-supported polyoxometalates [Si/AlO<small><sub>2</sub></small>]@[PWM] (M = Zn, Cu, Ni, Co, Fe, Mn, and Cr) were produced by immobilizing transition metal substituted Keggin-type polyoxometalates on cationic silica nanoparticles. These silica-supported polyoxometalates were then encapsulated with hexadecyltrimethylammonium bromide to obtain [Si/AlO<small><sub>2</sub></small>]@[PWM]@CTAB (M = Zn, Cu, Ni, Co, Fe, Mn, and Cr) to prevent polyoxometalate leaching. Characterization by FT-IR, TG-DTG, XRD, SEM, and TEM indicated that the polyoxometalate structure was retained after immobilization and encapsulation. These nanoscale compounds were used as heterogeneous catalysts in the oxidation of various alcohols, achieving very good to excellent yields with H<small><sub>2</sub></small>O<small><sub>2</sub></small> as an oxidant, and demonstrating high reusability. These benefits introduce surfactant-encapsulated silica-supported polyoxometalates as highly efficient heterogeneous catalysts in different oxidation reactions.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 11","pages":" 8777-8783"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra00821b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra00821b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Silica-supported polyoxometalates [Si/AlO2]@[PWM] (M = Zn, Cu, Ni, Co, Fe, Mn, and Cr) were produced by immobilizing transition metal substituted Keggin-type polyoxometalates on cationic silica nanoparticles. These silica-supported polyoxometalates were then encapsulated with hexadecyltrimethylammonium bromide to obtain [Si/AlO2]@[PWM]@CTAB (M = Zn, Cu, Ni, Co, Fe, Mn, and Cr) to prevent polyoxometalate leaching. Characterization by FT-IR, TG-DTG, XRD, SEM, and TEM indicated that the polyoxometalate structure was retained after immobilization and encapsulation. These nanoscale compounds were used as heterogeneous catalysts in the oxidation of various alcohols, achieving very good to excellent yields with H2O2 as an oxidant, and demonstrating high reusability. These benefits introduce surfactant-encapsulated silica-supported polyoxometalates as highly efficient heterogeneous catalysts in different oxidation reactions.

Abstract Image

纳米级表面活性剂包封二氧化硅支撑的聚氧化金属盐[Si/AlO2]@[PWZn]@CTAB的合成及其在醇类氧化中的催化应用†。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信