MapEval: Towards Unified, Robust and Efficient SLAM Map Evaluation Framework

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Xiangcheng Hu;Jin Wu;Mingkai Jia;Hongyu Yan;Yi Jiang;Binqian Jiang;Wei Zhang;Wei He;Ping Tan
{"title":"MapEval: Towards Unified, Robust and Efficient SLAM Map Evaluation Framework","authors":"Xiangcheng Hu;Jin Wu;Mingkai Jia;Hongyu Yan;Yi Jiang;Binqian Jiang;Wei Zhang;Wei He;Ping Tan","doi":"10.1109/LRA.2025.3548441","DOIUrl":null,"url":null,"abstract":"Evaluating massive-scale point cloud maps in Simultaneous Localization and Mapping (SLAM) still remains challenging due to three limitations: lack of unified standards, poor robustness to noise, and computational inefficiency. We propose MapEval, a novel framework for point cloud map assessment. Our key innovation is a voxelized Gaussian approximation method that enables efficient Wasserstein distance computation while maintaining physical meaning. This leads to two complementary metrics: Voxelized Average Wasserstein Distance (<monospace>AWD</monospace>) for global geometry and Spatial Consistency Score (<monospace>SCS</monospace>) for local consistency. Extensive experiments demonstrate that MapEval achieves <inline-formula> <tex-math>$100$</tex-math></inline-formula>-<inline-formula> <tex-math>$500$</tex-math></inline-formula> times speedup while maintaining evaluation performance compared to traditional metrics like Chamfer Distance (<monospace>CD</monospace>) and Mean Map Entropy (<monospace>MME</monospace>). Our framework shows robust performance across both simulated and real-world datasets with million-scale point clouds.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 5","pages":"4228-4235"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10910156/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Evaluating massive-scale point cloud maps in Simultaneous Localization and Mapping (SLAM) still remains challenging due to three limitations: lack of unified standards, poor robustness to noise, and computational inefficiency. We propose MapEval, a novel framework for point cloud map assessment. Our key innovation is a voxelized Gaussian approximation method that enables efficient Wasserstein distance computation while maintaining physical meaning. This leads to two complementary metrics: Voxelized Average Wasserstein Distance (AWD) for global geometry and Spatial Consistency Score (SCS) for local consistency. Extensive experiments demonstrate that MapEval achieves $100$- $500$ times speedup while maintaining evaluation performance compared to traditional metrics like Chamfer Distance (CD) and Mean Map Entropy (MME). Our framework shows robust performance across both simulated and real-world datasets with million-scale point clouds.
由于缺乏统一标准、对噪声的鲁棒性差和计算效率低这三个限制因素,在同步定位与绘图(SLAM)中评估大规模点云图仍然具有挑战性。我们提出了一个新颖的点云地图评估框架 MapEval。我们的关键创新点是体素化高斯近似方法,它能在保持物理意义的同时,实现高效的瓦瑟斯坦距离计算。这就产生了两个互补指标:体素化平均瓦瑟斯坦距离 (AWD) 用于全局几何,空间一致性分数 (SCS) 用于局部一致性。广泛的实验证明,与倒角距离(CD)和平均地图熵(MME)等传统指标相比,MapEval 在保持评估性能的同时,实现了 100 美元至 500 美元的提速。我们的框架在具有百万量级点云的模拟数据集和真实数据集上都显示出强大的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信