Spectral Scaling-Based Augmentation for Corruption-Robust Image Classification

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhuang Zhang;Lijun Zhang;Dejian Meng;Wei Tian;Jun Yan
{"title":"Spectral Scaling-Based Augmentation for Corruption-Robust Image Classification","authors":"Zhuang Zhang;Lijun Zhang;Dejian Meng;Wei Tian;Jun Yan","doi":"10.1109/LSP.2025.3549014","DOIUrl":null,"url":null,"abstract":"Image classifiers often degrade in performance when test images differ significantly from the training distribution due to real-world image corruptions. Frequency-based augmentations can be used to address this issue, but existing methods excel against corruptions caused by noise and blur while struggling with those caused by contrast and fog. To tackle these challenges, we propose a novel image augmentation method grounded in a new perspective of relative spectral differences. This perspective characterizes spectral variations introduced by common corruptions as changes in non-zero frequencies, providing a unified understanding of their effects on image spectra. Building on this insight, the proposed method incorporates two key modules: a random spectral scaling module that captures statistical properties of image spectra and a deep spectral scaling module that adaptively learns spectral adjustments through a neural network. Experiments demonstrate that the proposed method improves overall robustness across various corruptions, with notable gains of 6.3% and 6.4% on contrast and fog, respectively, where existing methods often fall short.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"1206-1210"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10916994/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Image classifiers often degrade in performance when test images differ significantly from the training distribution due to real-world image corruptions. Frequency-based augmentations can be used to address this issue, but existing methods excel against corruptions caused by noise and blur while struggling with those caused by contrast and fog. To tackle these challenges, we propose a novel image augmentation method grounded in a new perspective of relative spectral differences. This perspective characterizes spectral variations introduced by common corruptions as changes in non-zero frequencies, providing a unified understanding of their effects on image spectra. Building on this insight, the proposed method incorporates two key modules: a random spectral scaling module that captures statistical properties of image spectra and a deep spectral scaling module that adaptively learns spectral adjustments through a neural network. Experiments demonstrate that the proposed method improves overall robustness across various corruptions, with notable gains of 6.3% and 6.4% on contrast and fog, respectively, where existing methods often fall short.
基于谱标度的鲁棒图像分类方法
由于真实世界的图像损坏,当测试图像与训练分布显著不同时,图像分类器的性能往往会下降。基于频率的增强可以用来解决这个问题,但现有的方法在对抗噪声和模糊引起的腐败方面表现出色,而在对抗对比度和雾引起的腐败方面则表现不佳。为了解决这些挑战,我们提出了一种基于相对光谱差异的新视角的图像增强方法。这种观点将常见的腐败所带来的光谱变化描述为非零频率的变化,从而提供了对其对图像光谱影响的统一理解。在此基础上,提出的方法包含两个关键模块:捕获图像光谱统计属性的随机光谱缩放模块和通过神经网络自适应学习光谱调整的深度光谱缩放模块。实验表明,所提出的方法提高了各种腐败的整体鲁棒性,在对比度和雾度方面分别获得了6.3%和6.4%的显著增益,而现有方法往往达不到这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信