{"title":"Corrections to “Reed Solomon Codes Against Adversarial Insertions and Deletions”","authors":"Roni Con;Amir Shpilka;Itzhak Tamo","doi":"10.1109/TIT.2025.3538114","DOIUrl":null,"url":null,"abstract":"The purpose of this note is to correct an error made by Con et al. (2023), specifically in the proof of Theorem 9. Here we correct the proof but as a consequence we get a slightly weaker result. In Theorem9, we claimed that for integers <italic>k</i> and <italic>n</i> such that <inline-formula> <tex-math>$k \\lt n/9$ </tex-math></inline-formula>, there exists an <inline-formula> <tex-math>$[n,k]_{q}$ </tex-math></inline-formula> RS code that can decode from <inline-formula> <tex-math>$n-2k+1$ </tex-math></inline-formula> insdel errors where <inline-formula> <tex-math>$q = O\\left ({{k^{5} \\left ({{ \\frac {en}{k-1} }}\\right)^{4k-4}}}\\right)$ </tex-math></inline-formula>. Here we prove the following. <italic>Theorem 1:</i> For integers <italic>n</i> and <inline-formula> <tex-math>$k \\lt n/9$ </tex-math></inline-formula>, there exists an <inline-formula> <tex-math>$[n,k]_{q}$ </tex-math></inline-formula> RS-code, where <inline-formula> <tex-math>$q=O\\left ({{k^{4} \\cdot \\left ({{\\frac {4en}{4k-3}}}\\right)^{4k-3}}}\\right)$ </tex-math></inline-formula> is a prime power, that can decode from <inline-formula> <tex-math>$n - 2k + 1$ </tex-math></inline-formula> adversarial insdel errors. Note that the exponent of <italic>n</i> is <inline-formula> <tex-math>$4k-3$ </tex-math></inline-formula> whereas in Theorem 9 it is <inline-formula> <tex-math>$4k-4$ </tex-math></inline-formula>. For constant dimensional codes, the field size is of order <inline-formula> <tex-math>$O(n^{4k-3})$ </tex-math></inline-formula>, and in particular, for <inline-formula> <tex-math>$k=2$ </tex-math></inline-formula> the field size is of order <inline-formula> <tex-math>$O(n^{5})$ </tex-math></inline-formula>.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 4","pages":"3237-3238"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10870192/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this note is to correct an error made by Con et al. (2023), specifically in the proof of Theorem 9. Here we correct the proof but as a consequence we get a slightly weaker result. In Theorem9, we claimed that for integers k and n such that $k \lt n/9$ , there exists an $[n,k]_{q}$ RS code that can decode from $n-2k+1$ insdel errors where $q = O\left ({{k^{5} \left ({{ \frac {en}{k-1} }}\right)^{4k-4}}}\right)$ . Here we prove the following. Theorem 1: For integers n and $k \lt n/9$ , there exists an $[n,k]_{q}$ RS-code, where $q=O\left ({{k^{4} \cdot \left ({{\frac {4en}{4k-3}}}\right)^{4k-3}}}\right)$ is a prime power, that can decode from $n - 2k + 1$ adversarial insdel errors. Note that the exponent of n is $4k-3$ whereas in Theorem 9 it is $4k-4$ . For constant dimensional codes, the field size is of order $O(n^{4k-3})$ , and in particular, for $k=2$ the field size is of order $O(n^{5})$ .
期刊介绍:
The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.