Matthew Fickus;Enrique Gomez-Leos;Joseph W. Iverson
{"title":"Radon-Hurwitz Grassmannian Codes","authors":"Matthew Fickus;Enrique Gomez-Leos;Joseph W. Iverson","doi":"10.1109/TIT.2025.3536324","DOIUrl":null,"url":null,"abstract":"Every equi-isoclinic tight fusion frame (EITFF) is a type of optimal code in a Grassmannian, consisting of subspaces of a finite-dimensional Hilbert space for which the smallest principal angle between any pair of them is as large as possible. EITFFs yield dictionaries with minimal block coherence and so are ideal for certain types of compressed sensing. By refining classical work of Lemmens and Seidel based on Radon-Hurwitz theory, we fully characterize EITFFs in the special case where the dimension of the subspaces is exactly one-half of that of the ambient space. We moreover show that each such “Radon-Hurwitz EITFF” is highly symmetric, where every even permutation is an automorphism.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 4","pages":"3203-3213"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10857619/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Every equi-isoclinic tight fusion frame (EITFF) is a type of optimal code in a Grassmannian, consisting of subspaces of a finite-dimensional Hilbert space for which the smallest principal angle between any pair of them is as large as possible. EITFFs yield dictionaries with minimal block coherence and so are ideal for certain types of compressed sensing. By refining classical work of Lemmens and Seidel based on Radon-Hurwitz theory, we fully characterize EITFFs in the special case where the dimension of the subspaces is exactly one-half of that of the ambient space. We moreover show that each such “Radon-Hurwitz EITFF” is highly symmetric, where every even permutation is an automorphism.
期刊介绍:
The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.