Bilevel Optimization Framework for Multiregional Integrated Energy Systems Considering 6G Network Slicing and Battery Energy Storage Capacity Sharing

IF 5.2 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Kun Cui;Ming Chi;Yong Zhao;Zhi-Wei Liu
{"title":"Bilevel Optimization Framework for Multiregional Integrated Energy Systems Considering 6G Network Slicing and Battery Energy Storage Capacity Sharing","authors":"Kun Cui;Ming Chi;Yong Zhao;Zhi-Wei Liu","doi":"10.1109/OJIES.2025.3542262","DOIUrl":null,"url":null,"abstract":"Amidst the escalating challenges of global warming and energy crises, the rapid development of distributed renewable energy resources has emerged as a critical strategy. Regional integrated energy systems (RIESs) have garnered significant attention for their potential to integrate and optimize both distributed renewable energy resources and conventional energy facilities. This article presents a bilevel optimization framework for the electricity-storage coupling market in multi-RIES, considering the integration of 6G network slicing technology and battery energy storage (BES) capacity sharing. The upper-level model maximizes the profit of generation units by optimizing their bidding strategies, while the lower-level model aims to maximize social welfare through market clearing. The proposed line search-based global Levenberg–Marquardt algorithm addresses the limitations of existing algorithms with necessary and innovative improvements to tackle the challenge of global convergence in nonsmooth optimization problems. Numerical case studies validate the effectiveness of the proposed framework, demonstrating enhanced BES utilization, increased renewable energy generation, and improved social welfare. The results also highlight the sensitivity of social welfare to communication costs, underscoring the importance of careful cost calibration.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"396-414"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10890923","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10890923/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Amidst the escalating challenges of global warming and energy crises, the rapid development of distributed renewable energy resources has emerged as a critical strategy. Regional integrated energy systems (RIESs) have garnered significant attention for their potential to integrate and optimize both distributed renewable energy resources and conventional energy facilities. This article presents a bilevel optimization framework for the electricity-storage coupling market in multi-RIES, considering the integration of 6G network slicing technology and battery energy storage (BES) capacity sharing. The upper-level model maximizes the profit of generation units by optimizing their bidding strategies, while the lower-level model aims to maximize social welfare through market clearing. The proposed line search-based global Levenberg–Marquardt algorithm addresses the limitations of existing algorithms with necessary and innovative improvements to tackle the challenge of global convergence in nonsmooth optimization problems. Numerical case studies validate the effectiveness of the proposed framework, demonstrating enhanced BES utilization, increased renewable energy generation, and improved social welfare. The results also highlight the sensitivity of social welfare to communication costs, underscoring the importance of careful cost calibration.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Open Journal of the Industrial Electronics Society
IEEE Open Journal of the Industrial Electronics Society ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
10.80
自引率
2.40%
发文量
33
审稿时长
12 weeks
期刊介绍: The IEEE Open Journal of the Industrial Electronics Society is dedicated to advancing information-intensive, knowledge-based automation, and digitalization, aiming to enhance various industrial and infrastructural ecosystems including energy, mobility, health, and home/building infrastructure. Encompassing a range of techniques leveraging data and information acquisition, analysis, manipulation, and distribution, the journal strives to achieve greater flexibility, efficiency, effectiveness, reliability, and security within digitalized and networked environments. Our scope provides a platform for discourse and dissemination of the latest developments in numerous research and innovation areas. These include electrical components and systems, smart grids, industrial cyber-physical systems, motion control, robotics and mechatronics, sensors and actuators, factory and building communication and automation, industrial digitalization, flexible and reconfigurable manufacturing, assistant systems, industrial applications of artificial intelligence and data science, as well as the implementation of machine learning, artificial neural networks, and fuzzy logic. Additionally, we explore human factors in digitalized and networked ecosystems. Join us in exploring and shaping the future of industrial electronics and digitalization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信